Nova Scotia Power Inc. 2011 Annual Capital Expenditure Program

An Emera Company

Forward

Nova Scotia Power Inc. (NSPI, the Company) is in a period of historic change and transformation. In Nova Scotia, the transition to less carbon-intensive electricity generation through the legislated addition of renewable sources is an investment in a cleaner environment. As a regulated utility, government environmental regulation has enabled NSPI to begin making transformational investments which support increased renewable generation in Nova Scotia. These investments, combined with investments in energy efficiency and conservation, cause savings in fossil fuel costs that, due to the Fuel Adjustment Mechanism, customers have already begun to experience. Customers will continue to experience these fuel cost savings over the long term.

While the Company transitions to a generation mix that includes a greater amount of more stable priced renewable energy, fossil fuel and existing hydro generation continues to provide the majority of energy to the system. Maintaining and improving the dependability and operation of NSPI's thermal and hydro generating units serves to preserve lower fuel prices and system stability. Preserving the current hydro generation fleet is also necessary for the Company to achieve Renewable Energy Standard (RES) compliance targets for 2015 and beyond.

To respond to the focus on new renewable generation and deliver this energy, additional investment in the Company's transmission and distribution system ensures customers are provided a stable and reliable source of power.

While lowered fuel costs are experienced promptly through the FAM, customers will not begin to pay for new capital investments until a new Depreciation Study has been approved and the next General Rate Application has been filed and the rate setting process completed. General electricity rates have not changed in Nova Scotia since January 1, 2009. Rate recovery of NSPI's capital investments from customers does not occur until the Company receives approval of a General Rate Application. NSPI did not increase customers' general rates in 2010.

From 2010 until 2015, NSPI forecasts capital investments of approximately $\$ 2.8$ billion. This extraordinary level of spending was evidenced in 2010 when the Company spent more than $\$ 500$ million in renewable generation, transmission and distribution system enhancements, and continued investment to maintain existing plant assets and add cleaner generation using natural gas.

In 2010 the Company’s Nuttby Wind Project, Digby Wind Project and the Point Tupper Wind Project were constructed. The Port Hawkesbury Biomass Project, and replacement of the Water Street Gas Insulated Substation Project were approved by the Board, providing further examples of NSPI's focus on future reliability and environmental enhancement.

Investment in generation transformation, system reliability and the general maintenance and improvements required to optimize the delivery of electricity to customers is a regular and ongoing process at NSPI. For the first time, NSPI's Annual Capital

Expenditure (ACE) Plan will incorporate stakeholder input in the review and approval process. NSPI respectfully requests UARB approval of the 2011 ACE Plan.

How the ACE Plan is Structured

The Overview section of this document provides the reader with a view of NSPI's overall capital expenditure plan.

It begins by providing a graph detailing the previous year's capital investments, projections for the current year and a forecast of the company's capital spend for the next four years.

A chart is provided to illustrate the breakdown of NSPI’s 2011 ACE Plan. The budget for 2011 is separated into the following components:

- Capital item approval sought through the ACE 2011 process (including routine capital projects)
- A forecast of capital items to be submitted for approval later in 2011
- 2011 Carryover Projects; these are multi-year projects approved in prior years with spending occurring in 2011.
- Capital Items Less Than $\$ 250 \mathrm{k}$. Pursuant to a legislative change to the Public Utilities Act effective May 11, 2010, capital expenditures with a value up to $\$ 250,000$ may be made by a public utility, without formal approval of the Nova Scotia Utility and Review Board (Section 35 of the Public Utilities Act).
- Point Aconi Capital Items. Pursuant to Section 36 of the Public Utilities Act, investment in the Point Aconi Generating Station does not require Board approval.

Following this graphical summary of NSPI's ACE Plan, the Company provides lists of projects which are included in each of these sections. The 2011 capital investment of the Company is further catagorized by Justification Criteria and by spending category (i.e. new spending, carryover spending and routine capital spending).

Following this summary view, the capital items are then presented in the ACE Plan by functional area in the Capital Functions section of the document.

Additionally, the Company's Routine Capital program is provided in this area of the Plan. NSPI's Routine Capital program is an annual allocation of capital to fund repetitive individual capital replacements. These are capital spending items that are regularly needed for routine capital maintenance of the utility's assets. Routine Capital programs are included in the capital program in a pooled approach to reduce the administrative costs associated with identifying and approving individual Routine Capital projects and to provide NSPI with the flexibility required to effectively manage smaller, consistent scope utility capital projects from one year to the next. The overall Routine Capital

Program is presented along with a breakdown of each project within the program and a multi-year overview of the program.

This section concludes with a list and variance explanation of those 2010 ACE Plan projects which have been deferred, or cancelled.

The next four sections, Generation, Transmission, Distribution and General Plant provide the reader with details of each capital project for which the Company is seeking Board approval in 2011.

A Glossary of Terms follows the presentation of NSPI's capital projects.
The NSPI 2011 Quick Reference Sheet provides the reader with the Company's Allowance for Funds Used During Construction and Overhead rates used in the development of the 2011 capital budget.

The Plan concludes with a final section providing, for reference only, NSPI’s 2011 Depreciation Rates (Year 3 of the Phase In) as approved in the 2009 General Rate Application Decision.

Table of Contents

1 OVERVIEW 7
1.1 Annual Capital Expenditure Plan for 2011 to 2015 7
1.2 Summary of Annual Capital Expenditure Plan for 2011 9
1.3 ACE 2011 Capital Items Submitted for Approval 10
1.4 Capital Items Forecast for Approval Later in 2011 13
1.5 Capital Items Less than \$250,000 14
1.6 Pt. Aconi - New Item Spending 17
1.7 2011 Capital Spending by Justification Criteria 18
1.8 Capital Categories 20
1.9 Capital Functions 22
1.102011 Routine Capital Spending by Function 24
1.11 2010 ACE Items - Deferred / Cancelled 45
2 GENERATION 47
2.1 Five Year Plan and Highlights. 48
2.2 Generation - Carryover Spending 49
2.3 Generation - New Item Spending 50
3 TRANSMISSION 822
3.1 Five Year Plan and Highlights 823
3.2 Transmission - Carryover Spending 824
3.3 Transmission - New Item Spending 825
4 DISTRIBUTION 1727
4.1 Five Year Plan and Highlights 1728
4.2 Distribution - Carryover Spending 1729
4.3 Distribution - New Item Spending 1730
5 GENERAL PLANT 1871
5.1 Five Year Plan and Highlights 1872
5.2 General Plant - Carryover Spending 1873
5.3 General Plant - New Item Spending 1874
6 GLOSSARY OF TERMS 2354
7 NSPI 2011 QUICK REFERENCE SHEET 2356
82011 DEPRECIATION RATES (YEAR 3 of the PHASE-IN) 2357

Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

1 OVERVIEW

1.1 Annual Capital Expenditure Plan for 2011 to 2015
 (Millions of Dollars)

Highlights of Nova Scotia Power Inc.'s 2011 to 2015 capital plan:

- The proposed capital budget for 2011 is $\$ 367.8 \mathrm{M}$. NSPI seeks UARB confirmation that this overall budget amount is appropriate for 2011, although several items will have a subsequent approval process and the amount includes a variety of items that do not specifically require UARB approval.
- $\quad 2011$ capital investment submitted for specific UARB approval in this ACE Plan totals $\$ 149.1 \mathrm{M}$. Detailed descriptions and justification for each new item are included in this document, summarized by capital function.
- Carryover projects comprise $\$ 124.6 \mathrm{M}$ of total spending in 2011. Three large multi-year projects constitute $\$ 79.5 \mathrm{M}$ of the carryover spending: Port Hawkesbury Biomass Project, TUC6 Waste Heat Recovery and FAC Space 2011, all of which have been previously approved by the UARB.
- \quad Routine Capital spending represents $\$ 80.3 \mathrm{M}$ of total spending in 2011 and is for replacement of equipment ("like-for-like" replacement), additions to
existing equipment base resulting from system growth and the addition of customers to the system.
- \quad Projects totaling an additional $\$ 266.4 \mathrm{M}$ ($\$ 69.4 \mathrm{M}$ of spend in 2011) will be brought forward later in 2011 for separate approval.

Capital item justifications are based on the Capital Expenditure Justification Criteria (CEJC) as approved by the Board in 1995 with minor revisions per the 1997 filing. The CEJC provides the Board with assurance that NSPI is using sound economic, financial and technical criteria to ensure that its capital expenditures provide the maximum benefit to its customers. NSPI is working with UARB staff to update the CEJC, which should be completed during 2011.

NOTE: Figures presented in the ACE document reflect whole numbers, which may cause $\$ 0.1 \mathrm{M}$ in rounding differences on some line items.

1.2 Summary of Annual Capital Expenditure Plan for 2011

The following chart indicates the amounts involved in the various approvals required for NSPI's ACE filing. This Application seeks UARB approval of the 2011 capital routines and other 2011 projects, all of which total $\$ 149.1 \mathrm{M}$. Certain items do not require UARB approval, although the Company seeks confirmation from the Board that the overall 2011 ACE Budget is appropriate. This confirmation is subject to later approval processes for specific projects that are not yet ready for consideration, which amount to $\$ 69.4 \mathrm{M}$ in 2011 spending. The 2011 ACE Budget also includes spending on multi-year projects that were previously approved by the Board.

	2011 UARB Approval Request (\$M)	UARB Approval not Required (\$M)	Capital Items Forecast for Later Filing and Approval in 2011 (\$M)	NSPI Capital Projects with 2011 Carryover (\$M)	ACE 2011 Plan (\$M)
Capital Item Approval Sought through the ACE 2011 Process (Including Routine Capital Projects)	149.1				$\mathbf{1 4 9 . 1}$
Capital Items Submitted for Later Approval in 2011			69.4		$\mathbf{6 9 . 4}$
2011 Carryover Projects				124.6	$\mathbf{1 2 4 . 6}$
Capital Items Less Than \$250k		12.6			$\mathbf{1 2 . 6}$
Point Aconi New Capital Spend		12.1			$\mathbf{1 2 . 1}$
	$\mathbf{1 4 9 . 1}$	$\mathbf{2 4 . 7}$	$\mathbf{6 9 . 4}$	$\mathbf{1 2 4 . 6}$	$\mathbf{3 6 7 . 8}$

[^0]
Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

1.3 ACE 2011 Capital Items Submitted for Approval

This table provides the list of Capital Items for which NSPI seeks UARB Approval by this Application, totaling \$149.1M of spending in 2011.

CI\# Project Title	2011 Budget	Project Total
Transmission		
402332011 Protection Upgrades TUC	\$3,928,932	\$3,928,932
40287 Substation Recloser Replacement	3,764,921	3,764,921
40327 Glen Dhu 138 kV Substation	3,200,000	3,200,000
40322 New Prospect Road Substation	3,068,581	3,068,581
402812011 Transmission Line Insulator Replacement	3,018,100	3,018,100
402802011 Transmission Switch \& Breaker Upgrades	2,866,718	2,866,718
402882011 Substation PCB Equipment Removal	2,510,193	2,510,193
40260 L-7012 Beaver Narrows Crossing Replacement	1,899,224	1,899,224
40266 L6002 Deteriorated Plant Replacements	1,340,019	1,340,019
402312011 Protection Upgrades LAK	1,069,632	1,609,905
40307 L-6033 and L-6035 Water St. Transmission Tower Refurbishment	995,497	995,497
40270 L-5501 Upgrade 69 kV Circuit to Bridge Ave	800,793	800,793
40323 Canaan Road Line Terminal	738,632	738,632
402962011 Transmission Steel Tower Painting	587,142	587,142
402792011 Pole Retreatment	516,341	516,341
40321 Install Canaan Road to Prospect Road Transmission Line	62,412	2,024,763
Total Transmission New Spending	\$ 30,367,137	\$ 32,869,761
Distribution		
25575 Reliability Keltic Drive New Feeder	\$1,205,023	\$1,205,023
40224 78W-301 Second Peninsula	1,010,713	1,010,713
40226 Sluice Pt 3rd Phase Addition 102W-312	606,307	606,307
40204 70W-322 Starr Street Rebuild	546,821	546,821
40202 39N Maccan Conversion	538,646	538,646
392722011 Distribution Feeder Ties	500,000	500,000
40379 Scotch Village Phase 2	458,177	458,177
392692011 Recloser Additions	444,765	444,765
40203 103W-311 Gold River Phase 1	434,415	434,415
402202011 Halifax Underground Cable Replacement	418,861	418,861
40338 16W-301 Hebron Reconductor	350,000	350,000
40328 Feeder Exit Cable Replacements	317,587	317,587
402112011 3H/6H Replacement Program	306,895	306,895
40385 88W-323G Pinkney's Point Part 2	295,351	295,351
40273 101H-411 Targeted Feeder Replacements	273,399	273,399
40265 77V-401 Targeted Feeder Replacements	267,321	267,321
Total Distribution New Spending	\$7,974,281	\$7,974,281

CI\# Project Title	2011 Budget	Project Total
General Plant		
40298 SAN and Backup Replacement	\$947,305	\$947,305
40365 MS Sharepoint Platform Upgrade	703,711	908,174
40290 Enterprise Geographic Information System (GIS)	320,381	320,381
40275 Eastlink Outage Information Interface	296,460	296,460
Total Computers New Spending	\$2,267,857	\$2,472,320
40229 Protective Equipment Test Center Upgrade	\$875,542	\$875,542
40274 New RTU Deployment	509,706	509,706
402452011 RTU Replacement Program	459,517	459,517
Total Equipment Replacement New Spending	\$1,844,765	\$1,844,765
40278 OMS Upgrade 2011	\$2,050,951	\$2,050,951
40299 Field Office Phone System Replacement	833,557	833,557
40249 New Chester Microwave Radio Link	407,925	407,925
40261 Newtonville SR500 Multipoint Radio System Replacement	351,681	351,681
402522011 Replace Microwave Radio System	351,658	351,658
402472011 Radio Tower Upgrades	324,686	324,686
Total Telecommunication New Spending	\$4,320,458	\$4,320,458
40105 Boiler Condition and Data Tracking Software	\$570,643	\$570,643
40293 People Soft Workflow	276,578	276,578
Total Other General Plant	\$847,221	\$847,221
Total General Plant New Spending	\$9,280,301	\$9,484,764
Total Routine Capital Spending	\$80,283,546	\$80,283,546
Total Capital Items Seeking Approval	\$149,062,853	\$153,220,913

1.4 Capital Items Forecast for Approval Later in 2011

This table indicates projects that are not yet ready for submission to the UARB, and that NSPI anticipates will be filed for later approval in a separate hearing process in 2011, totaling $\$ 69.4 \mathrm{M}$ of 2011 spending on projects that are currently estimated to cost approximately $\$ 266.4 \mathrm{M}$. The budget numbers indicated below are estimates - NSPI requires additional time and effort to develop specific project budget proposals. This aspect of the Company's filing is designed to provide a general indication of anticipated 2011 projects.

CI\#	Project Title	2011 Budget	Project Total
Generation			
38947	Co-firing Biomass	\$12,000,000	\$ 24,000,000
40555	LIN3 - Bag House Addition	7,000,000	30,000,000
40557	LIN4 - Bag House Addition	7,000,000	30,000,000
14371	HYD - Avon \#2 Pipeline Replacement	4,731,316	4,731,316
17830	HYD - STM Big Indian Lake Dam Safety	4,270,026	4,270,026
39803	POT - Unit \#2 Generator Major Refurbishment	4,042,450	4,042,450
39932	TRE - Ash Site Development (Phase 2)	3,000,193	3,795,003
39926	TUC - Unit\#3 Generator Excitation \& AVR System Replacement	1,271,542	1,271,542
37611	LIN3 - Generator AVR Replacement	1,254,995	1,254,995
31583	LIN2 - L-1 Steam Turbine Blading Replacement	1,028,340	2,682,783
39566	LIN2 Steam Turbine Last Stage Blades Replacement	1,025,771	2,691,987
38944	LIN - Unit 2 Rotor Rewind	675,528	2,702,301
40330	LIN2 HT Fastener Replacement	414,003	865,689
	Generation Total	\$47,714,164	\$ 112,308,091
Transmission			
40317	Additional Water Street Transformer \& Low Side 25 kV Breakers	\$ 2,743,262	\$ 2,743,262
40311	50MVA Mobile Substation Transformer	1,598,007	2,640,974
40285	2011 Transmission Substation Cutout and Insulator Replacement	1,500,000	1,500,000
39723	104H-T63 Transformer Refurbishment	921,931	921,931
	Transmission Total	\$ 6,763,200	\$ 7,806,167
Distribution			
39270	2011 Dist. Cutout Replacements	\$ 2,953,283	\$ 2,953,283
40227	2011 Off Road to Roadside	2,500,000	2,500,000
40320	LED Streetlight Replacement	300,000	100,000,000
	Distribution Total	\$ 5,753,283	\$ 105,453,283
General Plant			
40403	Work \& Asset Management	\$ 5,473,581	\$ 6,655,504
40314	Capital Improvements Data Centre	3,500,000	3,500,000
32304	AMI Hardware \& Software Installation	152,028	30,694,639
	General Plant Total	\$ 9,125,609	\$ 40,850,143
	Total New Spending Forecast for Later Filing and Approval in 2011	\$ 69,356,256	\$ 266,417,683

1.5 Capital Items Less than \$250,000

This table indicates the list of projects that are valued less than $\$ 250,000$ and which therefore do not specifically require UARB approval. However, NSPI seeks confirmation that these projects are appropriate for 2011 ACE spending.

CI\#	Project Title	2011 Budget	Project Total	
Gas Turbine				
37982	CT's - Replace Obsolete AVR Burnside Unit\#3	\$ 59,380	\$	59,380
40543	CT's - Replace Tusket Dump Tank	55,388		55,388
40542	CT's - Fall Protection	66,356		66,356
Hydro				
40315	HYD - Connell's Dyke Refurbishment	177,371		177,371
40306	HYD - Replacement Front End Loader	157,421		157,421
Steam				
39777	TUC - Ferrous Sulphate System Upgrade	215,409		215,409
40331	POT - Asbestos Abatement Program 2011	214,520		214,520
40332	POT - Selective Superheater Replacement	205,514		205,514
40333	POT - Selective Reheater Replacement	204,595		204,595
40225	LIN - Common Water Lines Upgrades	204,080		204,080
39948	TRE - Ash Site Management 2011	200,351		200,351
40324	POT - Refurbish Boiler Bottom Ash Seal	200,299		200,299
39761	TUC3 - Analytical Panel Replacement	198,336		198,336
38870	TUC1\&2 - Closed Cooling Flow Capacity Improvements	193,793		193,793
39762	TUC3-CW Intake Steel Sheet Piling Refurbishment	191,833		191,833
39787	TUC1-CW Pumps Refurbishment	188,345		188,345
40230	TRE - Roof Drain Replacements	172,239		172,239
30744	LIN 2010 Main Feedwater CV and Actuator Replacement	170,178		170,178
38850	LIN1\&2 - Flyash System Upgrade	162,293		162,293
40222	LIN2 - Replace Boiler Feed Pump Check Valves	159,591		159,591
40207	TUC - Generator CO2 Purge System Upgrade	154,555		154,555
40235	LIN4-4160V Motor Refurbishment	154,011		154,011
38820	TRE - Pipe Hanger Replacements	149,831		149,831
40376	LIN Dumper - Car Wheel Lock Replacement	149,357		149,357
40371	LIN - Training Facilities	148,337		240,762
38044	TRE - Plant Lighting Replacement	145,588		145,588
18458	TUC1 - Generator H2 Dryer Replacement	139,061		139,061
39952	TRE6 - Coal Bunkerette Replacement	138,331		138,331
39970	TRE5-5-3 Pulverizer Refurbishment	134,913		134,913
39971	TRE5-5-4 Pulverizer Refurbishment	134,184		134,184
40297	TRE5 - Boiler House Tundish Drains Replacement	133,979		133,979
39936	TRE5-5-2 Pulverizer Refurbishment	133,350		133,350
40326	TUC3-Generator H2 Dryer Replacement	132,574		132,574
40023	TRE - Sewage Lift Station Upgrades	129,518		129,518
39782	TUC1\&3-CEMS Replacement	128,781		128,781
38108	POT - Generator AVR Refurbishment	128,270		128,270
36762	LIN3\&4 - Stack Insulation Upgrades	122,192		122,192
39939	TRE - Security Improvements	122,168		122,168
36702	LIN3 - Boiler Thermoprobe Upgrades	122,053		122,053
40234	LIN - 4160V and 600V Breaker Refurbishment	121,794		121,794
40340	POT - Replace B Depac Transport Vessel	120,096		120,096
40334	POT - Refurbish Underground Valves and Hydrants	119,198		119,198
30044	POT - Ash Cell Capping Cell C	117,423		117,423

CI\#	Project Title	2011 Budget	Project Total
30802	POT - Marine Terminal Dust Mitigation	$\mathbf{1 1 6 , 1 6 9}$	$\$ 116,169$
40253	POT - Ash Contacted Water Management	114,979	207,497
40024	TRE6 - CO2 Vaporizer Replacement	112,900	112,900
37102	LIN - Coal System CO Monitor	109,230	109,230
39982	TRE - Gauge Replacements	109,047	109,047
40113	POT - Class 3 Fall protection	107,095	107,095
40232	LIN4 - Fire System Panel Upgrade	102,295	102,295
28394	POT - 4KV, 600V Motor Refurbishment	99,331	99,331
39954	TRE5 - 5C Conveyor Belt Replacement	98,844	98,844
37824	TRE5 - Common Water Pipe Upgrade	98,701	201,197
40026	TUC - North Yard Ditch Pipe Extension	97,155	97,155
40337	POT - Replace WTP and WWTP Valves	96,429	96,429
40336	POT - Replace Dionex Instruments	95,133	95,133
40375	LIN - Crane Bus Duct Replacement	94,052	94,052
40339	POT - Replace \#5 HP Heater Bled Steam Isolator	85,873	85,873
37544	TRE5 - Coal MCC Transformer Replacement	85,361	85,361
28553	POT - SSC Cooling Water Line Replacement	82,069	82,108
40482	POT - Unit 2 Stack Refurbishments	81,837	81,837
40242	LIN2 - Polisher Resin Replacement	81,804	81,804
40378	TUC- Condenser Drain Improvements	81,190	81,190
39778	TUC - Motor Refurbishment 2011	75,310	75,310
40551	TUC - HFO Piping Containment	71,092	71,092
32823	TUC - Breaker Replacement	70,246	70,246
39959	TRE - 4kV Breakers	69,746	69,746
39786	TUC1 - HP Govenor Valves Refurbishment	87,624	87,624
39960	TRE5 - Boiler Hoist Well Improvements	65,023	65,023
40341	POT - Refurbish SSC Heat Exchangers	61,237	61,237
28152	TRE6 - Bottom Ash Overhead Door Replacement	61,066	61,066
27116	POT - Lab Upgrades	58,238	58,238
40335	POT - Replace GSCW Heat Exchanger Plates \& Gaskets	55,379	55,379
40212	LIN3\& - Burner Fronts	51,889	51,889
38542	TRE - Service Air Compressor	40,333	40,333
40444	TRE6 - Burner Front Fire Protection	39,866	39,866
40342	POT - Refurbish Unit 2 Precipitator	35,444	57,596
		$\mathbf{9}$	$\mathbf{9 , 2 6 8 , 8 4 3}$
	$\mathbf{9 , 5 7 8 , 4 7 3}$		

Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

1.6 Pt. Aconi - New Item Spending

This table indicates the Pt. Aconi capital projects for 2011.

CI\#	Project Title	2011 Budget	Project Total
34386	POA Cell 4 Stage 1 Residue Management Site	\$5,599,369	\$5,599,369
40406	POA - L-0 Low Pressure Steam Turbine Blade Replacen	2,989,721	2,989,721
40034	POA - 2011 Refractory Program	692,044	692,044
40428	POA - Fire Protection Upgrade	401,019	401,019
40409	POA-CW Oulet Piping Refurbishment	221,358	221,358
40032	POA - Boiler Feed Pump Rebuild	216,815	216,815
40029	POA - Battery Replacement	206,604	206,604
34383	POA CW Pump Rebuild	204,670	204,670
40381	POA - Chemical Line Upgrades	199,371	199,371
37262	POA - Elevator Controls Upgrade	142,827	142,827
40027	POA-Arrowhead Replacement Program	104,271	104,271
40035	POA - HVAC Replacement	97,587	97,587
40050	POA - Compressor Rebuild	96,850	96,850
36566	POA PA Positioner Upgrade	90,597	90,597
40407	POA- South LS Main Fan Replacement	90,293	90,293
40408	POA- Ion Chromatographic Meter Repl	81,823	81,823
36582	POA General Access Improvement	75,370	75,370
28781	POA Start-up Burner Optimization	74,983	74,983
40036	POA- Screw Cooler Cover Replacement	68,118	68,118
37522	POA 1A Conveyor Belt Replacement	60,133	60,133
40037	POA - 2011 Fall Protection	59,265	59,265
40038	POA - Security System Upgrade	57,259	57,259
40369	POA-HP Blower Program	51,545	51,545
31725	POA Boiler Expansion Joint Replacement	49,674	49,674
40033	POA - 4KV Breaker Refurbishment	46,971	46,971
37422	POA BA Drag Chain Replacement Progr	40,779	40,779
40051	POA - 4KV Motor Refurb. Project	31,954	31,954
40383	POA-NOx Analyzer/CEM Components	30,752	30,752
37502	POA Truck Scale Electronics Replace	30,066	30,066
40382	POA - Fire Zone Control Valve Replacement	24,679	24,679
	Total Pt. Aconi New Spending	\$12,136,767	\$12,136,767
	Pt. Aconi Carryover Spending	\$145,000	\$146,547
	Pt. Aconi Routine Spending	\$396,006	\$396,006
	Total Pt. Aconi Capital Spending	\$12,677,773	\$12,679,320

1.7 2011 Capital Spending by Justification Criteria (Millions of Dollars)

Items in the 2011 ACE Plan have been developed using the Capital Expenditure Justification Criteria Document of 1995 and 1997. Definitions of the various criteria are included in that document.

Justification Criteria	2011 Budget		$\begin{gathered} \hline \text { Less than } \\ \$ 250 \mathrm{~K} \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Items for } \\ \text { Later Filing } \\ \hline \end{array}$		Seeking Approval		Carryover		Routine Spend		Pt. Aconi	
Distribution System**	\$	61.0	\$	1.5	\$	5.8	\$	8.0	\$	0.6	\$	45.2	\$	-
Thermal		51.4		6.7		9.7		15.5		8.8		4.2		6.5
Work Support**		35.6		1.9		3.5		9.3		6.4		14.5		-
Hydro		11.6		0.3		4.7		2.3		2.5		1.7		-
Health and Safety		13.8		1.1		4.3		2.9		5.5		-		-
Transmission Plant		68.5		-		6.8		30.4		20.4		10.9		-
Environmental		105.7		1.2		29.0		0.4		68.4		1.2		5.6
Metering Equipment		3.5		-		0.2		-		1.0		2.4		-
System Design		5.5		-		5.5		-		-		-		-
Facilites/Land and Right-of-Way		11.1		-		-		-		10.9		0.2		-
Total	\$	367.8	\$	12.6	\$	69.4	\$	68.8	\$	124.6	\$	80.3	\$	12.1

** Details of justification sub-criteria are provided on the following page.

1.7.1 2011 Capital Spending by Justification Sub-Criteria

 (Millions of Dollars)| Justification Sub-Criteria | 2011
 Budget | | $\begin{gathered} \text { Less than } \\ \$ 250 \mathrm{~K} \\ \hline \end{gathered}$ | | Items for Later | | Seeking
 Approval | | Carryover | | Routine
 Spend | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distribution System | | | | | | | | | | | | |
| Requirement to Serve | \$ | 30.5 | \$ | 0.3 | \$ | \$ | \$ | 1.0 | \$ | - | \$ | 29.1 |
| Pole Strength | | 8.5 | | - | | - | | - | | - | | 8.5 |
| Joint Use | | 0.9 | | - | | - | | - | | - | | 0.9 |
| Deteriorated Conductor | | 1.0 | | - | | - | | 1.0 | | - | | - |
| Equipment Replacement | | 1.5 | | 0.2 | | 0.3 | | 1.0 | | - | | - |
| Outage Performance | | 8.9 | | 0.9 | | 5.5 | | 2.5 | | - | | - |
| Overloaded Equipment | | 2.5 | | - | | - | | 2.1 | | 0.4 | | - |
| System Protection | | 0.6 | | - | | - | | 0.3 | | 0.3 | | - |
| Other Distribution System | | 6.7 | | - | | - | | - | | - | | 6.7 |
| Total | \$ | 61.0 | \$ | 1.5 | \$ | \$ 5.8 | \$ | 8.0 | \$ | 0.6 | \$ | 45.2 |
| Work Support | | | | | | | | | | | | |
| Buildings | \$ | 5.5 | \$ | 0.3 | \$ | \$ | \$ | - | \$ | 3.1 | \$ | 2.2 |
| Telecommunications | | 5.4 | | 0.2 | | - | | 4.3 | | - | | 0.9 |
| Computers / IT | | 9.3 | | 1.4 | | - | | 2.3 | | 3.3 | | 2.3 |
| Tools \& Equipment | | 1.5 | | - | | - | | - | | - | | 1.5 |
| Vehicles | | 7.2 | | - | | - | | - | | - | | 7.2 |
| Equipment Replacement | | 1.8 | | - | | - | | 1.8 | | - | | - |
| Other | | 5.0 | | - | | 3.5 | | 0.8 | | 0.0 | | 0.6 |
| Total | \$ | 35.6 | \$ | 1.9 | \$ | \$ 3.5 | \$ | 9.3 | \$ | 6.4 | \$ | 14.5 |

1.8 Capital Categories

Nova Scotia Power Inc. classifies capital expenditures by Function and/or Justification Criteria. NSPI also classifies capital expenditures by Category: New Items, Carryover Items, and Routine Capital Items. For further clarification, each of these latter categories is divided into sub-categories.

1. New Items

This category includes new, non-routine capital items.
A. New Items with 2011 Completion - This category includes all new, non-routine capital items scheduled to start and finish in 2011.
B. New Items with Subsequent Completion - This category includes all new, non-routine capital items scheduled to start in 2011, but which will be completed beyond fiscal 2011.

2. Carryover Items

This category includes items that have been previously approved by the UARB.
A. Carryover Items with 2011 Completion - Includes items that will be completed during 2011.
B. Carryover Items with Subsequent Completion - Includes items that will be completed beyond 2011.

3. Routine Capital Items

This category is for recurring annual capital expenditures.
A. Replacement equipment (like-for-like replacement).
B. Additions to existing equipment base resulting from system growth.
C. The addition of customers to the system.

1.8.1 2011 Capital Spending by Category

 (Millions of Dollars)

	Previous Spending	$\begin{gathered} 2011 \\ \text { Budget } \end{gathered}$	Subsequent Spending Commitment	Total Estimated Commitment
New Items				
With 2011 Completion	-	\$120.4	-	\$120.4
With Subsequent Completion	-	42.5	\$203.9	246.4
	-	\$162.9	\$203.9	\$366.8
Carryover Items				
With 2011 completion	\$354.5	\$54.0	-	\$408.5
With Subsequent Completion	90.7	70.5	\$62.6	223.8
	\$445.2	\$124.6	\$62.6	\$632.4
Routine Items	-	\$80.3	-	\$80.3
Total	\$445.2	\$367.8	\$266.5	\$1,079.4

1.9 Capital Functions

Capital expenditures are categorized into functions for accounting and depreciation purposes. Each category has a different service life.

Generation Generation includes all items for NSPI's generation facilities. This includes replacements and additions to Thermal, Hydro, Wind, Tidal and Gas Turbine plants.

Transmission Transmission includes items for replacement, reinforcement or expansion of the transmission system, which transmits electrical energy from the generation plants, the NB/NSPI interconnection and throughout the province. Transmission includes energy transmitted at 69 kV level or higher.

Distribution Distribution includes replacement of and additions to equipment for delivering electric energy from points on the transmission system to customers served at voltages below 69 kV .

General Plant General Plant includes computer infrastructure and communication equipment, which comprise the majority of capital expenditures incurred under this function. Other items such as furniture, office equipment and capital tools are also included under this function.

The General Plant function also includes vehicles, that is, replacement and additions to transportation and work vehicles, and construction equipment.

The General Plant function also includes all buildings except generating and substation facilities. It is primarily customer service and head office facilities.

1.9.1 Total Annual Capital Expenditures by Function

(Millions of Dollars)

	Actuals			Forecast 2009 2010 (as of Q3)		$\begin{gathered} \text { ACE Plan } \\ 2011 \end{gathered}$	Forecast				
	2006	2007	2008			2012	2013	2014	2015		
Generation	\$43.2	\$47.2	\$78.5	\$165.0	\$411.7		\$180.6	\$237.0	\$305.0	\$342.0	\$130.0
Transmission	9.2	19.4	18.0	22.7	53.7	68.9	70.0	70.0	70.0	77.0	
Distribution	36.5	44.5	47.6	52.3	60.2	63.1	87.0	88.0	87.0	68.0	
General Plant	20.5	14.5	23.2	39.6	67.4	\$55.2	16.0	18.0	115.0	115.0	
Total	\$109.4	\$125.6	\$167.3	\$279.7	\$593.0	\$367.8	\$410.0	\$481.0	\$614.0	\$390.0	

1.9.2 2011 Capital Spending by Function (Millions of Dollars)

Distribution

Nova Scotia Power Inc.
 2011 Annual Capital Expenditure Plan

1.10 2011 Routine Capital Spending by Function

This category includes recurring annual capital expenditures for replacement of equipment (like-forlike replacement), additions to existing equipment base resulting from system growth and addition of customers to the system. Routine capital items for the 2011 ACE Plan have been developed using the Capital Expenditure Justification Criteria Document of January 1995 and 1997. Definitions of the various routines are included in that document.

	2011 Project	
Cost		
Generation	$\$ \quad 4,315,240$	
Generation Equipment Replacements		519,148
Generation Other Hydro	374,834	
Generation Other Thermal	$\$ \quad 5,209,222$	

Transmission

Transmission Substation Replacement, Additions/Modifications \$ 3,700,355
Primary Equipment Spares
188,649
Protection Modification \& Replacement
841,216
Transmission Line Replacement, Additions/Modifications

$6,210,003$
$\$ 10,940,223$

Distribution

Meters
Distribution Upgrades and Replacement
New Customers
Joint Use
Right-of-Way Widening

General Plant

Work Vehicles
Tools and Test Equipment
Telecommunications
Computing Asset Management
Property Improvements and Furniture
Other
\$ 2,409,631
19,269,971
24,139,678
856,694
940,833
\$ 47,616,807
\$ 7,156,591
1,773,500
869,481
2,374,312
2,311,145
2,032,265
\$ 16,517,294

Total 2011 Routine Capital Spending
$\xlongequal{\text { \$ 80,283,546 }}$

1.10.1 Routine Capital Spending by Function Yr/Yr

$\$ 2,349,998$	$\$ 2,346,763$	$\$ 2,451,586$	$\$ 2,973,230$	$\$ 3,700,355$
128,053	32,119	128,053	128,053	188,649
691,976	456,199	712,220	448,748	841,216
$5,202,954$	$5,163,744$	$5,474,078$	$5,355,694$	$6,210,003$
$\$ 8,372,981$	$\$ 7,998,825$	$\$ 8,765,937$	$\$ 8,905,725$	$\$ 10,940,223$

$\$ 2,133,939$	$\$ 1,728,366$	$\$ 2,151,185$	$\$ 2,006,587$	$\$ 2,409,631$
$15,475,041$	$20,025,282$	$17,334,753$	$19,698,208$	$19,269,971$
$19,434,154$	$20,339,542$	$21,792,479$	$19,807,123$	$24,139,678$
700,000	$1,066,653$	748,416	743,607	856,694
300,000	303,981	740,833	740,833	940,833
$\$ 38,043,134$	$\$ 43,463,824$	$\$ 42,767,666$	$\$ 42,996,358$	$\$ 47,616,807$

Transmission
Generation Other Hydro
Transmission Substation Replacement, Additions/Modifications
Primary Equipment Spares
Protection Modification \& Replacement
Transmission Line Replacement, Additions/Modifications

> Distribution Meters Distribution Upgrades and Replacement New Customers Joint Use Right-of-Way Widening
General Plant
Work Vehicles
Tools and Test Equipment
Telecommunications
Computing Asset Management
Property Improvements and Furniture Other
Total Routine Capital Spending

1.10.1.1 Routine Capital Spending: Yr/Yr Variance Analysis

Routine Function	ACE 2010 $\mathbf{(\$ M)}$	ACE 2011 $\mathbf{(\$ M)}$	Variance Incl (Dec)
Generation	4.32		
Transmission	8.77	5.21	0.88
Distribution	42.77	10.94	2.17
General Plant	7.90	47.62	4.85
		16.52	8.62
Total	63.76	80.28	16.53

Routine Function	$\begin{gathered} \text { Increase/ } \\ \text { (Decrease) } \\ \text { \$ M } \\ \hline \end{gathered}$	Variance Explanation
Generation	0.86	Roofing Routine: Trenton \& Tuft's Cove
	(0.23)	Roofing Routine: Pt. Tupper \& Pt. Aconi
	0.08	Equipment Replacements: All Plants \& Hydro
	(0.14)	Heat Rate Routine: All Plants
	0.26	Oil Release Risk Assessment \& Gate Refurbishment: Hydro
	0.06	Tooling Routine
	0.88	
Transmission	0.74	Transmission Line Replacements (T001 \& T011)
	1.25	Transmission Substation Replacements
	0.13	Protection Modifications
	0.06	Primary Equipment
	2.17	
Distribution	2.35	New Customers: Increase in Labour/ Material Assumptions
	1.94	Distribution Upgrades and Replacements (D005-1.51 \& D008-0.22)
	0.20	Right of Way Widening
	0.11	Joint Use
	0.26	Meters
	4.85	
General Plant	(0.05)	Telecommunications
	0.04	Security improvements: Hydro
	0.74	Environmental Assessment \& Remediation Routine
	0.02	Purchasing Equipment and Warehouse
	0.89	Property Improvement \& Furniture
	7.00	Work Vehicles:Creation of 3 routines, formerly special projects
	(0.01)	Computing Asset Management
	8.62	

1.10.1.2 2011 Routine Capital Spending: Project Details

Generation Routines		
Routine \#	Project	2011 Project Budget
	Generation Equipment Replacement	
S001	GS- Routine Equipment Replacement	135,000
	POA - Routine Equipment Replacement	239,143
	POT - Routine Equipment Replacement	257,989
	TRE - Routine Equipment Replacement	325,964
	TUC - Routine Equipment Replacement	360,000
	LIN - Routine Equipment Replacement	556,182
G001	CTS - Routine Spending	138,000
G008	CTS Tooling Routine	75,838
H001	HYD - Equipment Replacement	685,000
S004	TRE-Roofing Routine	499,880
	TUC-Roofing Routine	483,912
	LIN-Roofing Routine	445,073
H004	HYD-Roofing Routine	113,259
	Generation Equipment Replacement Total	4,315,240
	Hydro Program	
H005	HYD Oil Release Risk Assessment	269,148
H006	HYD - Gate Refurbishment Routine	250,000
	Sub-Total Hydro Programs	519,148
	Generation Other Thermal	
S005	TUC-Heat Rate Routine	61,485
	POA-Heat Rate Routine	49,997
	POT-Heat Rate Routine	73,149
	TRE-Heat Rate Routine	89,988
	LIN-Heat Rate Routine	100,215
	Sub-Total Heat Rate	374,834
Generation Routine Total		5,209,222

Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

Transmission Substation Replacement, Additions/Modifications		
$\begin{array}{\|l} \text { Routine \# } \\ \hline \text { T003 } \end{array}$	Description	Total Project Budget (\$)
	Transmission Substation Replacements	
T003	Trenton Substation - Repair concrete footings	50,000
	Maccan Substation - Remove footings and Steel Lattice Tower	45,000
	L5506 - Repair and Replace Concrete Poles on the Pictou Causeway	190,000
	Lochaber Substation - Repair concrete footings	60,000
	Tuft's Cove, Replace 30, 69kV switches	410,660
	Replace grounding transformer - 2 of	86,840
	6S Terrace St. - replace switchgear with reclosers	105,500
	Wreck Cove Repair Ocean Electrode for Diast. Neutral Grounding	60,000
	Battery Bank Replacements	160,000
	Feeder Exit Cable Replacement	100,000
	Bus Replacement	75,000
	Switch Replacement	35,000
	Cowie Falls Transformr	200,000
	20V-T52 Replace Rads	124,000
	11W - Replace Rads	125,000
	25W - Replace Rads	124,000
	43W - T61 Replace Rads	124,000
	Crushed Stone Replacement	50,000
	Fence Replacement	25,000
	Unplanned Failures	350,000
	Subtotal	2,500,000
T004	Substation Additions/Modifications	
	Line L-5545A	16,355
	138kV Switch Additions	300,000
	A/C units - 6 stations	120,000
	10 On-Line Oil Filtration Units	233,200
	10 On-Line Gas Monitors	206,650
	GIC Monitor	28,150
	Additional Feeder at 22C-Cleveland	220,000
	Unknown Additions	76,000
	Subtotal	1,200,355
Total		3,700,355

Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

Primary Equipment Spares				
Routine \#	Description	Total Project Budget (\$)		
	Protection Modification and Replacement	78,649		
	Spare Surge Arrestors	40,000		
	Tapchanger contact set for Federal Pioneer units (2)	25,000		
	Tapchanger spare parts for Ferranti Packard units (2)	45,000		
	Unidentified Items	$\mathbf{1 8 8 , 6 4 9}$		
Total				

Protection Modification and Replacement		
Routine \#	Description	Total Project Budget (\$)
	Protection Modification and Replacement	
T016	L-6537 Install Fault Location	55,678
	Replace LFCB on L-6047/L-6048	172,070
	L-5011 (58H-99H) Pilot Wire Replacement	61,709
	L-5537 Pilot Wire Replacement	61,709
	L-6535 Add Permissive Channels at 30N	7,411
	Replace 345 kV Line Protection	56,308
	Unplanned Relay Replacement	87,421
	Replace Fault Recorder at Milton	32,783
	L-5563/L-5560 Add Fault Location at 2S	54,001
	67N \& 3C Aux Relay Replacement	12,937
	Replace Fault Recorder at Canaan Rd	27,002
	Add Satelite Clocks at 50W, 9W, 99W, 2S	54,774
	Add Lockout relay to 50W-T1 Auto-isolation scheme	11,464
	Replace SPS	34,179
	Add 86 Device to 2S BBU	18,590
	Add Reclose Block to 50W-T63	18,590
	Add Reclose Block to 9W-512, 515	18,590
	Unidentified Projects	56,000
Total		841,216

Transmission Line Replacement, Additions/Modifications

Routine \#	Line \#	Description	Total Project Budget (\$)
T011	Provincial Plan Transmission Replacement		
	5003	Sackville to Akerley	102,000
	5004	Sackville to Rockingham	58,000
	5011	Farrell to Imperial	82,000
	5019	Canaan Rd to Hollow Bridge	16,000
	5028	Onslow to Stewiacke	360,000
	5044	Tap to Middleton	20,000
	5053	Tremont to Micheclin	6,000
	5510	Bridge Ave to Malay Falls	170,000
	5511	Trafalgar to Upper Musquodobit	83,000
	5512	Malay Falls to Ruth Falls	62,000
	5524	Antigonish to Salmon River	135,000
	5531	Gulch Bear River to Sissiboo	250,000
	5532	Big Falls to Gulch	250,000
	5534	Tusket to Hebron	60,000
	5538	Sissiboo to Weymouth	42,000
	5546	Bridgewater to Westhavers	70,000
	5549	Maccan to Hickman St	52,000
	5550	Maccan to Parrsboro	12,000
	5555	Gannon Rd to Aconi	58,000
	5559	Wycocomaugh to SW Margaree	32,000
	5565	Seaboard to Albert Bridge	30,500
	5571	VJ to Whitney Pier	27,000
	5575	Whitney Pier to Lingan	80,000
	5579	SW Margaree to Cheticamp	20,000
	6008	Sackville to Lakeside	17,000
	6011	Brushy Hill to St Croix	26,000
	6020	Milton to Suriquois	62,000
	6033	Lakeside to Water Street	5,000
	6042	Tufts Cove to Dartmouth East	11,000
	6043	Dartmouth to Musquodobit	150,000
	6051	Brushy Hill to St Croix	27,000
	6503	Onslow to Trenton	97,000
	6513	Onslow to Spring Hill	370,000
	6514	Maccan to Spring Hill	30,000
	6515	Antigonish to Port Hastings	600,000
	6527	Onslow Substation Tie	24,000
	6533	Victoria Junction to Lingan	22,000
	6536	Spring Hill to NB Border	210,000
	6537	Port Hastings to Glen Tosh	20,000
	6538	Glen Tosh to Gannon Road	237,000
	6545	Glen Tosh to Wreck Cove	64,000
	6549	Geln Tosh to Wreck Cove	129,560
	7002	Onslow to Brushy Hill	356,624
	7005	Onslow to Port Hastings	380,000
	7014	Lingan to Woodbine	35,000
	7019	Onslow to Dalhousie Mountain	12,000
	5027A	Tusket to Lower Woods Harbour	13,000
	5540A	Tap to Deep Brook Hydro	85,000
	5545A/5545B	Bridgewater to Auburndale/High St	85,000
	8001	Onslow to New Brunswick	60,000
	Various		253,000
		Subtotal	5,458,684

Nova Scotia Power Inc.
2011 Annual Capital Expenditure Plan
Transmission Line Replacement, Additions/Modifications

Routine \#	Line \#	Description	Total Project Budget (\$)
T001	Transmission Line Replacements		
	The budgetary funding for T001 is generally held at approximately $\$ 700 \mathrm{k} / \mathrm{ye}$. This may vary dependant on things like storms.		751,319
		Subtotal	751,319
Total			6,210,003
Transmission Routine Total			10,940,223

Meters							
Item\#	Prg\#	Meter Typ	Meter Style	Description	2011 Forecast	Current Unit Cost	Capital for Meters (\$)
1.0 Element, 120-240 volt							
1	94	A1D+	ZQB20000R	240V, 10A, 2W, 4 Jaw, 4 dial	200	144.24	28,848.00
2	20	A1T+	QB20130R	T/R, 2W, 4Jaw, TOU (KWH) c/w L.C. (ETS)	180	190.73	34,331.40
3	30	A1R+	QB20200R	T/R, 2W, 4Jaw, KW/KVA dmd	140	154.65	21,651.00
4	39	A1TL+	QB20D3DR	T/R, 2W, 4Jaw, TOU(KWH) c/w modem, L.P,L.C. (ETS)	4	445.76	1,783.04
5	40	A!RL+	QB20F0DR	T/R, 2W, 4Jaw, KW/KVA dmd, c/w modem, L.P.	4	395.67	1,582.68
1.5 Element, 120-240 volt							
	N/A	C1S	Centron	240V, 200A, 3W, 4 Jaw, 5 dial	10000	26.50	265,000.00
6	19	A1T+	QC30130R	S/C, 3W, 4Jaw, TOU(KWH) c/w L.C. (ETS)	864	164.28	141,937.92
7	31	A1R+	QC30200R	S/C, 3W, 4Jaw, KW/KVA dmd	240	154.65	37,116.00
8	32	A1R+	QD50200R	T/R, 3W, 4Jaw, KW/KVA dmd	60	154.65	9,279.00
2.0 Element, 120-480 volt							
9	N/A	R2S	ZF532000000	120V,200A,3W,5Jaw(90,clock pos:), 5 dial	1300	97.00	126,100.00
10	26	A1R+	Q530200R	S/C, 3W, 5Jaw(9 o,clock pos:) KW/KVA dmd,(Mult: 25)	200	158.17	31,634.00
11	33	A1T+	Q530130R	S/C, 3W, 5Jaw(9 o,clock pos:)TOU(KWH) c/w L.C.(ETS)	60	194.25	11,655.00
12	35	A1RL+	Q220F0DR	T/R, 3W, 8Jaw, KW/KVA dmd, c/w modem, L.P.	4	404.78	1,619.12
13	72	A1RL+	Q220F3DR	T/R, 3W, 8Jaw, kW/kVA dwd, Modem, LP (5-min int) KYZ	4	454.78	1,819.12
27	97	A1R+	ZQ220200R	T/R, 3W, 8Jaw, KW/KVA dmd	250	158.17	39,542.50
2.5 Element, 120-347 volt							
14	81	A1D+	Q820000R	T/R,4W, 13Jaw, 120-480V, 0.1-10A (KWH)	40	144.24	5,769.60
15	28	A1R+	Q820200R	T/R, 4W, 13Jaw, KW/KVA dmd	400	158.17	63,268.00
16	29	A1R+	Q820230R	T/R, 4W, 13Jaw, KW/KVA dmd, c/w KYZ	20	208.17	4,163.40
17	34	A1RL+	Q820F0DR	T/R,4W, 13Jaw, KW/KVA dmd c/w modem, L.P.	20	404.78	8,095.60
18	73	A1RL+	Q820F0DR	T/R, 4W, $13 \mathrm{Jaw}, \mathrm{kW} / \mathrm{kVA}$ dmd, modem, LP (5 min int)	4	404.78	1,619.12
19	74	A1RL+	Q820F3DR	T/R, 4W, $13 \mathrm{Jaw}, \mathrm{kW} / \mathrm{kVA}$ dmd, modem, LP (5 min int), KYZ	4	454.78	1,819.12
3.0 Element, 120-347 volt							
20	47	A1D+	Q330000R	S/C, 4 W, 7Jaw, (KWH)	500	144.24	72,120.00
21	48	A1D+	Q320000R	T/R, 4W, 13Jaw, (KWH)	20	144.24	2,884.80
22	18	A1RL+	Q320F0DR	T/R, 4W, 13Jaw, KW/KVA dmd, c/w modem, L.P.	20	404.78	8,095.60
23	22	A1R+	Q330200R	S/C, 4W, 7Jaw, KW/KVA dmd, (Mult 25)	800	158.17	126,536.00
24	23	A1R+	Q320200R	T/R, 4W, 13Jaw, KW/KVA dmd	400	158.17	63,268.00
25	75	A1RL+	Q320F0DR	T/R, 4W, $13 \mathrm{Jaw}, \mathrm{kW} / \mathrm{kVA}$ dmd, modem, LP (5 min int)	4	404.78	1,619.12
26	76	A1RL+	Q320F3DR	T/R, 4W, $13 \mathrm{Jaw}, \mathrm{kW} / \mathrm{kVA}$ dmd, modem, LP (5 min int), KYZ	4	454.78	1,819.12
				TWACS Modules	500	72.00	36,000.00
-							
				Total Meters	16246		1,150,976
-							
				Misc Meters "ION"			50,000
				CT and PT requirements			121,569
				Wire Adapters and switches			63,991
				Total Materials			1,336,536
				Vehicle Allocation			137,790
				Construction Overhead			391,080
				Labour			494,224
				Total (Materials, Vehicle, Construction OH \& Labour)			2,409,631

Nova Scotia Power Inc.
 2011 Annual Capital Expenditure Plan

Distribution Upgrades and Replacements		
Routine \#	Description	Total Project Budget (\$)
D051	System Performance Improvements	
	Bridgewater Feeder Tie	168,585
	Electronic Sectionalizer Installation Program	100,000
	Cleveland New Feeder	90,000
	Sydney - Gang Operated Switches	100,000
	Sub-total System Performance Improvements	458,585
D055	Replace Deteriorated Plant - Planned	
	Packaged D055 (Parts of)	2,003,182
	Bin Work	2,500,000
	Streetlight/service removal	1,600,000
	Padmount replacement	750,000
	Field Driven Work	750,000
	Sub-total Replace Deteriorated Plant - Planned	7,603,182
D005	Replace Deteriorated Plant - Unplanned	
	The budgetary amount was developed based on any estimated 3,467 mandays of work at a unit cost of $\$ 2,307 /$ manday	7,998,369
D006	Regulatory Replacement	
	The budgetary amount is developed based on past experiences or meetings with various government agencies. This amount could vary based on current year decisions by these agencies.	838,500
D008	Provincial Storm	
	This budgetary amount is developed based on past experience. There can be significant variation in this amount based on yearly storm activity.	2,371,335
Total		19,269,971

Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

New Customers		
Routine \#	Description	Total Project Budget (\$)
D004	New Customer Replacements	
	This budgetary amount is budgeted as a \% of D061 and D062 including capital contributions. In 2011 this is estimated to be 32\%.	5,858,803
D018	Primary Equipment Spares	
	This budgetary amount was developed based on an estimated amount of distribution spare equipment required during the current year.	150,043
D061	New Customers- Residential	
	This budgetary amount is for the costs associated with new residential customers including capital contributions. Costs include metered services, unmetered services, line extensions and underground services.	12,701,508
D062	New Customers- Commercial	
	This budgetary amount is for the costs associated with new commercial customers including capital contribution. Costs include metered services, unmetered services, line extensions and underground services.	5,429,324
Total		24,139,678

Joint Use

Routine \#	Description	Total Project Budget (\$)
D007	Contractual Replacement (Joint Use) This budgetary amount is developed in discussions with area communication utilities and may vary depending on their level of activity.	$\mathbf{8 5 6 , 6 9 4}$

Right-of-Way Widening			
Routine \#	Total Project Budget (\$)		
D010	Provincially Widening		
This budgetary amount is developed based on the anticipated level of widening in the current year.	$\mathbf{9 4 0 , 8 3 3}$		

Distribution Routine Total

Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

Work Vehicles				
Routine \#	Description	Quantity	Price ea. (\$)	Total for $2011 \text { (\$) }$
P006	Replacement \& Additional Work Vehicles			
	```Pole Trailer Double Reel Trailer Utility Trailer Single Reel ATV replacements(including tracks) (WFM/COPS) ATV Ramp Systems Snowmobile Miscellaneous Trailers etc Forgeron and License Commissioning Materials Total Materials Commissioning Labour A/O Salvage```	1	26,000	26,000
		1	21,000	21,000
		1	15,000	15,000
		1	13,000	13,000
		3	17,000	51,000
		3	2,200	6,600
		1	11,000	11,000
			8,000	8,000
		1	2,900	2,900
		1	1,000	1,000
			117,100	155,500
		1	2,000	2,000
		1	1,411	1,411
		1	$(7,390)$	$(7,390)$
	Subtotal			151,521
P009*	Mobile Transformer \& Track Routine	1		383,930
P063	Class 3 Work Vehicle Replacements   This budgetary amount is for costs associated with the purchase of light work vehicles. Included is the cost of commissioning, accessories and the salvage value of retired vehicles.	6	144,273	865,640
	Work Vehicle Replacements   This budgetary amount is for costs associated with the purchase of work vehicles. Included is the cost of commissioning, accessories, and the salvage value of the retired trucks.	16	240,000	3,840,000
P061	Transportation Vehicle Replacements   This budgetary amount is for costs associated with the purchase of transportation vehicles. Included is the cost of commissioning, accessories, and the salvage value of retired vehicles.	66	29,023	1,915,500
Total				7,156,591

*This budgetary amount is developed based on a possible repairs or modifications to track machines or the mobile transformer.

## Nova Scotia Power Inc.

## 2011 Annual Capital Expenditure Plan

Routine \#	Region	Description	Quantity	Budget Unit Cost (\$)	Budget   Total (\$)
P002	Western Territory	2-012-004-735-P002			
		2/0 grounds	3	1,300	3,900
		Phasing Sticks	1	2,100	2,100
		signage	9	2,200	19,800
		Poleboss reel and rope	3	3,810	11,430
		poleboss payout pole mount	3	1,100	3,300
		poleboss payout drive unit	1	15,569	15,569
		12Ton Presses	2	3,900	7,800
		6 ton Battery Operated Press	8	2,200	17,600
		Amp probe with power factor	1	2,600	2,600
		regular amp probe	1	1,900	1,900
		Ground Sets	6	1,300	7,800
	West Total				93,799
	Eastern Territory	2-012-004-752-P002			
		12Ton Presses	8	3,900	31,200
		CSA Die sets for 12 ton Press	8	1,400	11,200
		Hydraulic long hot stick saws	6	1,600	9,600
		3 Phase PQ Meter	1	11,000	11,000
		Phasing Sticks	3	1,800	5,400
		Full Set of Burndy U type dies	2	5,000	10,000
	East Total				78,400
	Central Territory	\|2-012-004-623-P002			
		Hydraulic drill	12	1,300	15,600
		Hydraulic Chain saw	3	1,500	4,500
		Grounding set (2/0 grounds, transmission)	7	1,200	8,400
		6 ton press	12	1,400	16,800
		12 ton press	10	5,800	58,000
		sets of dies for y -35 press for new sleeves	10	1,500	15,000
		3 phase patten jumper sets - 15' $-2 / 0$	4	1,200	4,800
		Ground tester	1	6,000	6,000
		U/G large corner guide 5X11" for significant cable pulls	1	1,500	1,500
		Load pickup device (set)	5	2,000	10,000
		cable locator	1	6,500	6,500
		live line phasing sticks	2	2,000	4,000
		Cable locating sonde fish tape	1	2,000	2,000
		Box locator	1	2,000	2,000
		Hydraulic Cutters	2	2,000	4,000
		Battery powered cable cutters	2	1,000	2,000
		Oil Pump and accessories	1	2,000	2,000
		TDR	1	10,000	10,000
		TTR - Transformer Tested 3/0	1	2,500	2,500
		Air Monitors	4	2,000	8,000
		Man hole Retractor	1	3,000	3,000
		AMP Probe with universal attachment	4	1,500	6,000
		DRA's for engineering	1	7,000	7,000
	Central Total				199,600
	T\&D Asset	\|2-012-004-800-P002			
		Breakdown Allowance	1	50,698	50,698
		Hot Stick Sets for New Trucks	10	2,500	25,000
		Hydraulic Drills - Boom Tip	86	1,675	144,050
		Data Collection Units	4	1,500	6,000
		Jumper Cable Test Set (PETC)	1	1,500	1,500
		Hydraulic Press and Dies for PETC	1	5,000	5,000
		Cable Cutter for PETC	1	2,500	2,500
		Drill Press and Tooling (PETC)	1	1,400	1,400
		Aisle Stacker (PETC)	1	28,000	28,000
		Dielectric Rope Tester	1	15,000	15,000
		Data Collection Units	3	5,000	15,000
		CAD Plotter	1	18,000	18,000
	T\&D Asset Total				312,148

## Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan



## Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

Telecommunications

Routine \#	Description	Total Project Budget (\$)
P025	Mobile Radio Routine	
	Spare Parts	25,823
	Spread Spectrum Radios	47,886
	Test MTR2000 Repeater Spares \& Allocate	13,660
	Subtotal	87,369
P027	Telecommunication Radio \& Fibre Optics	
	HVAC and Generator Replacements	111,724
	Maple Ridge, Wittenburg, Horton Lake Repairs	28,329
	Misc. repairs	15,557
	Subtotal	155,610
P028	Telecommunication Systems Replacements \& Mods	
	Memramcook Telecom Changes	3,000
	Circuit Grooming	6,000
	Replace Bayly Multiplex	85,358
	Install Newbridge Shelves	17,508
	Batteries - 12v Repeater	7,175
	Batteries - 8 sites	55,690
	48v DC Charger Systems(Large)-4 sites	65,513
	48v DC Charger Systems(Small)-4 sites	18,345
	RAL 48VDC Charger	15,320
	Misc. Power Supplies	5,000
	UPS Repairs/Replacements	5,000
	Misc. Newbridge eqpt.	8,000
	Remove Dartmouth East Tower	13,300
	NRC to Tusket Microwave Radio	7,520
	Replace Ethernet Spread Spectrum Radios	33,000
	Network Monitoring - replace net guardians	50,130
	Cable \& Entrance Protection	10,000
	Switched Communications	5,000
	Wreck Cove Diversity Antenna	12,643
	Misc. Fibre Optics	28,000
	Subtotal	451,502
P814	Telecommunication Spares	175,000
Total		869,481

Minor variances due to rounding

Nova Scotia Power Inc.
2011 Annual Capital Expenditure Plan

*For the NSPI/CGI Infrastructure Routine unit pricing is not provided in the contract. Fees for Routine Capital are based
on annual amount.
**This budgetary amount is developed based on SCADA equipment/operator interfaces failures or modifications.

Nova Scotia Power Inc.
2011 Annual Capital Expenditure Plan

Property Improvements \& Furniture		
Routine \#	Project	Total Project   Budget (\$)
P001	FAC - Property Improvements	$2,161,145$
P030	FAC - Lower Water Street	150,000
Total		$\mathbf{2 , 3 1 1 , 1 4 5}$


Other	Project	Total Project   Budget (\$)
Routine \#	Per	
P012	HYD - Security Improvement	149,397
P041	FAC - Land Acquisition Routine	27,728
P035	POA - Kelly Rock Limestone Quarry	954,004
	FAC Enviro Property Remed Routine	233,138
	FAC Environment Site Assess Routine	300,000
	Purchasing Equip \& Warehouse Routine	$\mathbf{2 , 0 3 2 , 2 6 5}$
Total		

### 1.10.1.3 Routine Capital Spending: Project Breakdown Yr/Yr





P010	16073	SCADA Improvements Routine	44,080	35,588
P020	10632	NSPI/CGI Infrastructure	$2,805,800$	$2,761,799$
P031	29114	NSPI Non-CGI Infrastructure	164,320	160,657
P040	28522	CT'S Dcms Routine	10,200	8,263
	25647	POA - DCMS Routine Computer Replace	27,060	24,291
	25667	POT - DCMS Equipment Replacement Routine	-	
	25626	TRE - DCMS Equipment Replacement Routine	32,290	27,630
	25646	TUC - DCMS Equipment Replecement Routine	38,640	1,000
	25668	LIN - DCMS Equipment Replacement Routine	43,510	33,075
	Computing Asset Management Total	$\mathbf{3 , 1 8 7 , 7 3 0}$	$\mathbf{3 , 0 5 2 , 3 3 2}$	

## Nova Scotia Power Inc.

2011 Annual Capital Expenditure Plan


## Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

### 1.11 2010 ACE Items - Deferred / Cancelled

CI Number	Project Title	$\begin{aligned} & 2010 \text { ACE } \\ & \text { Project Total } \end{aligned}$	
Generation			
38868	HYD Marshall Falls Hydro Station   Further evaluation of this project is ongoing. This project has been deferred until evaluation of the project and economic analysis is complete.	1,801,524	Deferred
30802	POT- Marine Terminal Dust Mitigation	746,743	Deferred
38944	This item w as submitted for Board approval on December 13, 2010.   LIN - Unit 2 Rotor Rewind   The major outage for Lingan Unit\#2 is currently scheduled for 2012. This item w ill be submitted for Board approval in 2011.	423,521	Deferred
38603	TRE6 - LP Turbine Gland Replacement	403,980	Deferred
38602	Further evaluation of this project determined it could be deferred until 2012. TRE - Fire System Upgrades	402,653	Deferred
	Further evaluation of this project determined that it can be deferred until 2011.		
38102	This project has been deferred until NSPI considers the impact of the project on meeting the Renew able Energy Standard.	397,966	Deferred
28645	TRE6 - Turbine Controls Power Supplies Upgrades	331,974	Deferred
	Further evaluation of this project determined it could be deferred until 2012.		
35083	LIN 2010 Ash Site Sealing and Capping	298,795	Deferred
	Further evaluation of this project determined it could be deferred until 2011.		
38945	LIN1 - \#8 Nozzle Replacement   The latest inspection, completed in 2010, show ed that the nozzle w as acceptable for continued service. Replacement is no longer required.	290,174	Cancelled
26472	TRE - 6A CW Pump Refurbishment	262,674	Deferred
	Further evaluation of this project determined that it can be deferred until 2011.		
34505	TRE - 6B Vacuum Pump Overhaul	185,504	Deferred
	Further evaluation of this project determined it could be deferred until 2012.		
37562	TRE5 - Bunker C Pump Replacement	160,000	Deferred
	Further evaluation of this project determined it could be deferred until 2012.		
22426	TRE - 5-2 Air Heater Outlet Expansion Joint Replacement	131,615	Deferred
	Further evaluation of this project determined it could be deferred until 2012.		
28738	TUC - Waste Water Lagoon Enhancement   Further evaluation of this project determined that the risk of over-flow in the lagoon is low and remedial action is not required at this time.	119,038	Deferred
37945	TUC - Condensor Tube Sheet Protection   Re-evaluation of the project determined that the installation of an impressed current cathodic protection system is not the most effective solution. Further evaluation of options is ongoing	117,005	Deferred
28694	TRE5 - Pulverizer PA Damper Drive Upgrades	108,970	Deferred
	Further evaluation of this project determined it could be deferred until 2012.		
38730	TRE - Transformer Compound Sprinkler System Upgrade Further evaluation / testing in 2010 determined that upgrades to the transformer compound sprinkler system are no longer required.	100,088	Cancelled
36763	LIN - Laffin Brook Culvert Upgrade   This item has been deferred until further environmental assessment has been completed.	82,308	Deferred
37883	TUC - Automate Breaker Closures	52,742	Deferred
	Further evaluation of this project determined that it can be deferred until frequency of two-shifting operation increases.		
37262	POA - Elevator Controls Upgrade	40,955	Deferred
	Further evaluation of this project determined that it can be deferred until 2011.		
37422	POA - Bottom Ash Drag Chain Replacement Program	40,779	Deferred
	Further evaluation of this project determined that it can be deferred until 2011.		

## Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan

CI Number	Project Title	$\begin{array}{r} 2010 \\ \text { Projec } \end{array}$	ACE   t Total
Transmission			
33504	Upgrade 69 kV Circuit to Pleasant Street L5536 Installation of a 69 kV switch now allows for load to be switched follow ing a contingency	1,449,970	Cancelled
38893	2010 Steel Tower Life Extension   Work associated with this project will now be completed in 2011 under CH402962011 Steel Tow er Life Extension	800,379	Cancelled
Distribution			
25575	Reliability Keltic Drive New Feeder   Project required rescoping due to an examination of alternative routes. This item has been deferred to 2011.	708,813	Deferred
General Plant			
32304	AMI Hardware \& Software Installation	72,644	Deferred
37842	Further evaluation of this project determined that it can be deferred until 2011. Telecom Management System	50,332	Cancelled

## Generation

## Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan

## 2 GENERATION

(Millions of Dollars)

### 2.1 Five Year Plan and Highlights



- The focus for generation capital in 2011 is sustaining the current asset base, air emission control upgrades and incremental generation expansion.
- Year 2011 generation capital is comprised of the following:
o $\quad \$ 21.2 \mathrm{M}$ New items with total spend greater than $\$ 250 \mathrm{~K}$ seeking ACE approval
o $\$ 47.7 \mathrm{M}$ New items with total spend greater than $\$ 250 \mathrm{~K}$ for individual approval
o $\quad$ \$9.3M New items with total spend less than $\$ 250 \mathrm{~K}$
o \$12.1M New items at Pt. Aconi
o \$85.2M Carryover Spending
o \$5.2M Routine Capital Spending


### 2.2 Generation - Carryover Spending

| Project <br> Number <br> CINumber | Project Title |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note 1: Project Listings are as of December 2010
Note 2: * Pending UARB Approval
Note 3: ${ }^{* *}$ UARB Approved, awaiting activation.

### 2.3 Generation - New Item Spending

CI\#	Project Title	2011 Budget	Project Total
Hydro			
17583	HYD - BER-GUL - Electrical Refurbishment	\$855,393	\$855,393
40276	HYD - WRC Tailrace Tunnel Bulkhead Gate Refurbishment	529,557	529,557
40316	HYD - Barteaux Culvert Refurbishment	499,522	499,522
40313	HYD - Annapolis Safety Pumps Refurbishment	387,498	387,498
40301	HYD - Big Falls Spillway - Walkway Replacement	267,491	267,491
12079	HYD - SHH - RUF Unit 1\&2 Runner Replacement	77,171	831,591
	Total Hydro New Spending	\$2,616,632	\$3,371,052
Steam			
39529	POT - Steam Turbine Overhaul 2011	\$3,749,830	\$3,749,830
38826	POT - Distribution Control System (DCS) Upgrade	1,287,302	1,287,302
35083	LIN 2011 Ash Site Sealing and Capping	1,112,451	1,112,451
40271	LIN2 Boiler Refurbishment	1,093,704	1,093,704
39903	LIN 2011 Mill Refurbishment	760,079	760,079
40422	LIN3 Boiler Refurbishment	757,323	757,323
40423	LIN4 Boiler Refurbishment	752,389	752,389
28289	POT - Turbine Electro Hydraulic Governor Replacement	725,435	725,435
39933	TRE - Siding Replacement	296,793	603,707
39780	TUC - Unit 1 Cooling Water Intake Structural Refurbishment (Phase II)	562,163	562,163
40344	POT - Waterwall Panel Replacement 2011	517,626	517,626
40244	LIN Boiler Feed Pump Rebuild	508,703	508,703
40246	LIN Cooling Water Pump Refurbishment	452,421	452,421
28393	POT 2A Mill and Feeder Refurbishment	424,712	424,712
39935	TRE - Facilities Improvements	411,950	411,950
39760	TUC - Asbestos Abatement 2011	384,297	384,297
39946	TRE - Wastewater Treatment Plant Upgrades	353,531	353,531
26472	TRE - 6A Cooling Water Pump Refurbishment	349,690	349,690
40427	LIN3 Turbine Fire Suppression	348,710	348,710
40184	LIN2 Turbine Fire Suppression	343,611	343,611
28554	POT - Analytical Panel and Analyzer Replacement	343,220	343,220
40319	TRE - HVAC Replacements (2011)	294,925	294,925
40243	LIN 3 Battery \& Charger Replacement	283,106	283,106
39783	TUC - Security System Upgrade	281,247	281,247
39944	TRE6 - Fly Ash Line Replacement	259,172	259,172
39943	TRE6-6B CW Screen Refurbishment	257,503	257,503
40210	LIN Fall Protection	254,544	254,544
39940	TRE5 - Bottom Ash Refurbishment	254,370	254,370
40223	LIN-CW Screen Refurbishment	253,879	253,879
39945	TRE - Asbestos Abatement 2011	250,928	250,928
40228	Boiler House Intake Louvers	250,571	250,571
39937	TRE - Fall Protection (Phase 3)	250,242	250,242
40363	LIN3 High Voltage Bushing Refurbishment	114,529	504,168
Total Steam New Spending		\$18,540,956	\$19,237,509
	Total Generation New Spending	\$21,157,588	\$22,608,561

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 17583

Title: HYD - BER-GUL - Electrical Refurbishment

Start Date:	$2011 / 03$
Final Cost Date:	$2012 / 03$
Function:	Generation
Forecast Amount:	$\$ 855,393$

## DESCRIPTION:

This project includes the replacement of the switchgear, controls and generator protection at the Gulch Hydro station.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Hydro
Sub Criteria: Equipment Replacement

## Why do this project?

The Gulch Hydro Plant went into service in 1952. The existing circuit breakers, power cables, control relays, protective relays, and voltage regulators have reached the end of their useful lives and replacement parts are no longer available.

## Why do this project now?

This equipment has reached the end of its reliable operational life. Completing this project now will mitigate the risk of equipment failure. Failure of the switchgear or protective relays could expose the turbine generator to the potential for damage.

## Why do this project this way?

Upgrading obsolete equipment of this vintage is not practical. Replacement is required.


## CI Number: 40276

Title: HYD - WRC Tailrace Tunnel Bulkhead Gate Refurbishment

Start Date:	$2011 / 05$
Final Cost Date:	$2011 / 12$
Function:	Generation
Forecast Amount:	$\$ 529,557$

## DESCRIPTION:

This project provides for the refurbishment of the tailrace tunnel isolating bulkhead gate at the Wreck Cove Generating Station.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

## Justification Criteria: Hydro

Sub Criteria: Equipment Replacement
Why do this project?
The tailrace tunnel bulkhead gate is the only designed means of isolating the tailrace tunnel from the ocean. This gate is installed during routine or emergency work in the tailrace tunnel along the length of the tunnel that is within or below the tidal zone.

## Why do this project now?

A recent inspection of the tailrace tunnel indicated some areas of concern. If a rock fall was to occur in the tailrace tunnel with the tailrace tunnel bulkhead gate in its current condition, the Wreck Cove Generating Station could be out of service for several weeks while the gate is repaired. In addition, the coating on the gate has degraded, and the base metal is now exposed to the marine elements and will corrode at an accelerated rate. If the gate is not refurbished in the near future. The base metal loss will be such that major structural repairs or complete replacement would be required, which this project is intending to avoid.

## Why do this project this way?

Refurbishing the gate to its original design condition is the most practical and cost effective method of ensuring isolation of the tailrace tunnel from the ocean is maintained. It is also standard industry practice to have a tailrace gate capable of isolating the generating station from the downstream water body.


Original Cost:

## Engineering Inspection Report

Report No. WRC-WRC-G-RP-2008-23
Wreck Cove Tailrace Outlet Bulkhead Gate
Date of inspection: November 20, 2008
Inspection crew: Inspection report prepared by:

## Summary of Major Findings

The purpose of the inspection was to determine the condition of the tailrace outlet bulkhead gate for the Wreck Cove powerhouse which is located at the downstream end of the powerhouse tailrace tunnel. The following is a summary of the inspection and associated recommendations. The pictures located at the end of this report serve as a pictorial summary of the condition of the gate at the time of the inspection.

## A) Tailrace Tunnel Portal Structure

The tailrace tunnel portal structure appears is in good condition and appears to have had some restoration work in the recent past. Photo 1 shows the gate gains, embedded parts and soffit on the right side. Photo 2 shows the gate gains, embedded parts and soffit on the left side, complete with the access ladder.
Photo 3 shows the gate soffit and associated embedded parts to also be in good condition. Photo 4 shows the support for the gate lifting sling when the gate is in position. It is showing some signs of minor corrosion. Photo 5 is a view looking downstream from the tailrace tunnel portal. Note the standing water on the deck of the concrete structure. Given the proximity to the ocean, this standing water is likely laden with salt and this will contribute to premature deterioration of the concrete structure. The drainage in this area should be improved to prevent the accumulation of water.

## B) Tailrace Outlet Bulkhead Gate

## a) General

The tailrace outlet bulkhead gate is a $22^{\prime}-8$ " wide by $20^{\prime}-8$ " high structural steel gate with $3 / 8$ " skin plate on the upstream side, and four hydraulically operated cylinders (one at each corner) to ensure positive sealing when the gate is in position. The gate is being stored vertically on a purpose-built reinforced concrete frame located immediately to the right of the tailrace outlet, within 50 feet of the ocean. It is also located at the toe of the slope of a steep roadway embankment. The area is accessed via a locked gate in a chain link security fence around the area.

## b) Upstream Face

Photos 6 and 7 show an overview of the upstream face of the gate. As these photos show, the coating system has failed and the bare steel is now directly exposed to the salt-laden air of the ocean. Photos 8 and 9 show a closer view of the upstream face of the gate, showing the coating system on the upper twothirds of the gate is ineffective and is delaminating in sheets. The coating on the bottom third of the gate is also in very poor condition, and is failing more locally. Photo 10 shows the sill of the gate as seen from the upstream side of the gate. The sill of the gate is located near ground level, and is almost constantly engulfed by grass and small vegetation. This is contributing to accelerated deterioration of the gate. Photo 11 shows a close-up view of the skin plate on the upstream face of the gate. This shows the beginnings of pit corrosion of the unprotected steel. Now that the coating system has failed completely and the steel is unprotected, rapid corrosion of the gate is taking place. Photo 11 shows the rubbers seals, and the batten strips and countersunk screws holding the rubber seals in position to be in good condition.

## c) Hydraulic Cylinders

As noted previously, the gate is equipped with four hydraulically operated cylinders to ensure positive sealing when the gate is in position. Photos 12 and 13 show the upper right hydraulic cylinder on the gate. The coating in this area has failed completely and corrosion of the unprotected steel stiffeners is progressing. The hydraulic cylinders appear to have no positive means of protection / preservation from the environment and appear to be inoperable due to deterioration. The same is true for the lower right hydraulic cylinder shown in Photos 14 and 15, the upper left hydraulic cylinder shown in Photo 16 and the lower left hydraulic cylinder shown in Photo 17. Photo 17 also shows the accumulation of rocks against the gate due to erosion of the adjacent embankment slope.

## d) Downstream Face

Photo 18 shows the downstream face of the gate in the vicinity of the gate valve (right side of gate) used for filling the tailrace tunnel. As seen in that photo, there is significant corrosion of the horizontal and vertical structural steel members and skin plate. Photo 19 is another view of this area more clearly showing the advanced corrosion of the steel members, as well as the accumulation of rock and debris on the bottom horizontal structural steel member of the gate due to erosion of the adjacent embankment slope. The debris is approximately 2 feet deep at this location. This is further accelerating corrosion in this area. Photo 20 shows a similar situation on the right side of the gate, with the depth of accumulated rocks and debris more than 2 feet deep.

The top horizontal structural steel member, hydraulic lines and lifting sling are shown in Photo 21. As that photo shows, the coating has completely failed on the top member and it is essentially bare steel and is starting to show signs of pit corrosion. The condition of the hydraulic lines is unknown, but the lifting sling
appears to have no grease coating and is showing rust. This sling should be tagged out-of-service until it is inspected and approved for use. Photo 22 shows another view of the downstream face, highlighting the ongoing corrosion of the structural steel members and skin plate. Photo 23 shows the downstream side of the gate in the vicinity of the upper left hydraulic cylinder. Although the coating has not yet completely failed in this area, this photo illustrates the complexity of the gusset plates and stiffeners in the area of the hydraulic cylinders which must be refurbished.

## e) Other

In its stored position, the gate is held in the vertical position by turnbuckles located at the upper left and right corners of the gate. The turnbuckle at the upper left corner of the gate is shown in Photo 24. Based on the size of the turnbuckle, it is likely it was designed to resist the wind load on the gate only. It is unlikely it was designed to resist the significant horizontal loadings resulting from the accumulation of snow behind the gate at the toe of slope of the adjacent embankment. In addition, it is unlikely to meet the current horizontal seismic loadings on the gate.

## Conclusions

1) In its current condition, the tailrace outlet bulkhead gate is inoperable. The hydraulic cylinders used to ensure positive sealing of the gate are inoperable.
2) The gate is badly corroded and the rate of corrosion will increase now that most of the coating has failed.
3) The operability of the gate valve in the gate is unknown
4) The lifting sling for the gate cannot be used until it is inspected and approved for use. Given its age and length of exposure to the salt-laden air next to the ocean, it is expected this sling will not be approved, and will need to be replaced.
5) There is a significant depth of debris accumulating against the gate (in its stored position) because the gate is stored at the toe of slope of an embankment, and the embankment is eroding.
6 ) The means of securing the gate in the vertical position (when not in use) does not meet current seismic design standards, and was likely not designed to resist the significant horizontal loadings resulting from the accumulation of snow behind the gate at the toe of slope of the adjacent embankment.

## Recommendations

1) Sandblast and paint the steel support for the gate lifting sling located on the concrete portal structure.
2) Improve drainage on the deck of the concrete portal structure to prevent the accumulation of water.
3) Tag the gate lifting sling "out-of-service" until the sling is inspected and approved for service, or is replaced.
4) Construct a removable enclosure in which the gate can be stored in the flat position, to periodically service it and protect it from the elements. The structure should include a concrete slab-on-grade floor. This removable structure should be located away from the toe of slope of the adjacent embankment.
5) Refurbish the gate. This includes:

- Remove and replace rubber seals as necessary
- Remove and refurbish / replace the hydraulic cylinders and hydraulic lines
- Design and install a lifting arrangement for the gate to tilt the gate from its stored flat position to its vertical installation position
- Sandblast and coat the gate
- Paint the weight of the gate on the skin plate


Photo 1: Gate gains and soffit on right side


Photo 2: Gate gains and soffit on left side


Photo 3: Gate soffit


Photo 4: Support for gate sling when gate is in position


Photo 5: Looking downstream from tailrace tunnel portal. Note the standing water on the deck.


Photo 6: Overview of tailrace gate located adjacent to the tailrace tunnel portal. Upstream face of tailrace gate shown here.


Photo 7: Upstream face of the tailrace gate as seen from the right side


Photo 8: Upstream face of tailrace gate - upper half


Photo 9: Upstream face of tailrace gate - lower half


Photo 10: Sill of tailrace gate. Note outlet from gate valve.


Photo 11: Close up of right side of tailrace gate showing bare metal and the starting of pit corrosion.


Photo 12: Upper right corner of gate showing upper right hydraulic cylinder


Photo 13: Upper right hydraulic cylinder. Note the hydraulic line below the cylinder.


Photo 14: Lower right hydraulic cylinder


Photo 15: Close up of lower right hydraulic cylinder


Photo 16: Upper left hydraulic cylinder


Photo 17: Lower left hydraulic cylinder


Photo 18: Downstream face of gate with gate valve used for filling the tunnel


Photo 19: Downstream face of gate, right side, showing rock and debris accumulation on bottom horizontal member. Debris is more than 2 ft deep.


Photo 20: Downstream face of gate, left side, showing rock and debris accumulation on bottom horizontal member. Debris is more than 2 ft deep .


Photo 21: Downstream face of gate showing top horizontal structural member, hydraulic lines and lifting sling


Photo 22: Downstream face of gate


Photo 23: Downstream face of gate in vicinity of upper left hydraulic cylinder


Photo 24: Turnbuckle at upper left corner of gate

			ilrace Tu of Altern	unnel Gates atives			
	get Year :	2011		Date :		21-D	c-10
	sion :	Power Production		CI Number:		40	
	artment :	Hydro Production		Project No. :			
	Alternative		After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Tailrace Tu	el Gates	6.68\%	27,676,613	1	\#NUM!	9.2 years
	0		NA	NA	NA	\#NUM!	0.0 years
	0		NA	NA	NA	\#NUM!	0.0 years
	0		NA	NA	NA	\#NUM!	0.0 years

Recommendation :

Refurbish the tailrace tunnel gates and replace front-end loader.

## Notes/Comments :

## Tailrace Tunnel Gates

Capital costs included in this analysis are the capital expenditures for the Wreck Cove Generating Station over its 25 year economic life. These capital investments include CI\#40276 WRC Tailrace Tunnel Gate, (\$517K) and CI\#40306 Front-End Loader (\$157K) in 2011, Unit \#1 Overhaul (\$4M) in 2012, Dam Safety (\$1.2M) in 2013 and Unit \#2 Overhaul (\$4M) in 2014, Justification for this project is based on a replacement energy costs of $\$ 4.8 \mathrm{M}$ in both 2011 and 2012 in the event of an un-planned failure of the tailrace tunnel gates.

## 0

0

0
Wreck Cove Tailrace Tunnel Gates




Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011		3,298,725	$(686,978)$	20,609	666,369	2,611,747	(1,065,725)	1,546,022	1.000	1,546,022	1,546,022
2012	-	3,268,725	$(4,000,000)$	159,982	4,506,387	$(731,275)$	$(964,488)$	$(1,695,763)$	0.939	$(1,591,518)$	$(45,496)$
2013	-	3,334,100	$(1,200,000)$	306,383	5,400,003	2,134,100	$(938,592)$	1,195,507	0.881	1,053,041	1,007,545
2014	-	3,400,781	$(4,000,000)$	444,000	8,956,003	$(599,219)$	$(918,147)$	$(1,517,366)$	0.827	$(1,254,382)$	$(246,837)$
2015	-	3,468,797	-	537,360	8,418,643	3,468,797	$(908,745)$	2,560,052	0.776	1,986,255	1,739,418
2016	-	3,538,173	-	505,119	7,913,524	3,538,173	$(940,247)$	2,597,926	0.728	1,891,732	3,631,149
2017	-	3,608,937	-	474,811	7,438,713	3,608,937	$(971,579)$	2,637,358	0.683	1,802,388	5,433,537
2018	-	3,681,115	-	446,323	6,992,390	3,681,115	$(1,002,786)$	2,678,330	0.641	1,717,868	7,151,406
2019	-	3,754,738	-	419,543	6,572,847	3,754,738	$(1,033,910)$	2,720,827	0.602	1,637,847	8,789,253
2020	-	3,829,832	-	394,371	6,178,476	3,829,832	$(1,064,993)$	2,764,839	0.565	1,562,028	10,351,281
2021	-	3,906,429	-	370,709	5,807,767	3,906,429	$(1,096,073)$	2,810,356	0.530	1,490,139	11,841,419
2022	-	3,984,558	-	348,466	5,459,301	3,984,558	$(1,127,188)$	2,857,369	0.498	1,421,930	13,263,350
2023	-	4,064,249	-	327,558	5,131,743	4,064,249	$(1,158,374)$	2,905,875	0.467	1,357,174	14,620,524
2024	-	4,145,534	-	307,905	4,823,839	4,145,534	$(1,189,665)$	2,955,869	0.438	1,295,658	15,916,181
2025	.	4,228,444	-	289,430	4,534,408	4,228,444	$(1,221,094)$	3,007,350	0.411	1,237,188	17,153,369
2026	-	4,313,013	-	272,065	4,262,344	4,313,013	$(1,252,694)$	3,060,319	0.386	1,181,585	18,334,954
2027	-	4,399,273	-	255,741	4,006,603	4,399,273	$(1,284,495)$	3,114,778	0.362	1,128,683	19,463,636
2028	-	4,487,259	-	240,396	3,766,207	4,487,259	$(1,316,527)$	3,170,731	0.340	1,078,328	20,541,964
2029	-	4,577,004	-	225,972	3,540,235	4,577,004	$(1,348,820)$	3,228,184	0.319	1,030,377	21,572,341
2030	-	4,668,544	-	212,414	3,327,821	4,668,544	$(1,381,400)$	3,287,144	0.300	984,698	22,557,039
2031	-	4,761,915	-	199,669	3,128,151	4,761,915	$(1,414,296)$	3,347,619	0.281	941,168	23,498,207
2032	-	4,857,153	-	187,689	2,940,462	4,857,153	$(1,447,534)$	3,409,619	0.264	899,670	24,397,877
2033	-	4,954,296	-	176,428	2,764,034	4,954,296	$(1,481,139)$	3,473,157	0.248	860,099	25,257,976
2034	-	5,053,382	-	165,842	2,598,192	5,053,382	$(1,515,138)$	3,538,245	0.232	822,353	26,080,329
2035	-	5,154,450	-	155,892	2,442,301	5,154,450	$(1,549,553)$	3,604,897	0.218	786,339	26,866,668
2036	-	5,257,539	-	146,538	2,295,763	5,257,539	$(1,584,410)$	3,673,129	0.205	751,969	27,618,637
2037	-	-	-	137,746	2,158,017		42,701	42,701	0.192	8,204	27,626,842
2038	-	-	-	129,481	2,028,536	-	40,139	40,139	0.180	7,238	27,634,080
2039	-	-	-	121,712	1,906,824	-	37,731	37,731	0.169	6,386	27,640,465
2040	-	-	-	114,409	1,792,414	-	35,467	35,467	0.159	5,633	27,646,099
2041	-	-	-	107,545	1,684,870	-	33,339	33,339	0.149	4,970	27,651,069
2042	-	-	-	101,092	1,583,777	-	31,339	31,339	0.140	4,385	27,655,453
2043	-	-	-	95,027	1,488,751	-	29,458	29,458	0.131	3,868	27,659,321
2044	-	-	-	89,325	1,399,426	-	27,691	27,691	0.123	3,412	27,662,734
2045	-	-	-	83,966	1,315,460	-	26,029	26,029	0.116	3,011	27,665,744
2046	-	-	-	78,928	1,236,533	-	24,468	24,468	0.109	2,656	27,668,400
2047	-	-	-	74,192	1,162,341	-	23,000	23,000	0.102	2,343	27,670,743
2048	-	-	-	69,740	1,092,600	-	21,620	21,620	0.096	2,067	27,672,811
2049	-	-	-	65,556	1,027,044	-	20,322	20,322	0.090	1,824	27,674,634
2050	-	-	-	61,623	965,422	-	23,491	23,491	0.084	1,978	27,676,613
Total	-	107,996,966	(9,886,978)	8,921,556	144,714,541	98,109,988	(30,760,821)	67,349,168	15.0	27,676,613	755,546,756



## CI Number: 40316

Title: HYD - Barteaux Culvert Refurbishment
Start Date: 2011/02
Final Cost Date: 2011/10
Function: Generation
Forecast Amount: \$499,522

## DESCRIPTION:

This project consists of refurbishing the Barteaux Culvert stream crossing at Sawmill Creek (a tributary of the Annapolis River). To accommodate the design flood, it's necessary to add an additional culvert and raise the causeway that the culvert is currently in.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Hydro
Sub Criteria: Maintenance

## Why do this project?

The existing corrugated metal pipe culvert is deteriorated and needs to be refurbished. In addition, the discharge capacity of the existing culvert must be increased to meet the requirements of the Nova Scotia Department of Environment (NSE). These requirements state that stream crossings must be capable of handling the 100 year flood.

Why do this project now?
The corrugated metal pipe culvert recently experienced a partial failure where a portion of the culvert became dislodged, partially blocked the flow area, and needed to be removed. If refurbishment is not completed, there is potential for additional portions of the culvert to become dislodged, and affect the structural integrity of the culvert and earth fill embankment above.

NSPI has been monitoring the deterioration of this culvert and it now requires replacement.
Why do this project this way?
Refurbishment of the culvert and modifying the earth fill embankment above is the most economic means of providing access across Sawmill Creek.


## CI 40316 - HYD Barteaux Culvert Refurbishment

The following is a breakdown of costs associated with the HYD Barteaux Culvert Refurbishment

Administrative Overheads and Interest Labour
Contracts
Consulting
Other
$\$$
$\$ 9,000$
$\$$
$\$$
$\$ 12,000$
$\$ 499,522$
The contracts estimate of $\$$ is based on the attached engineering report and estimate for alternative \#2 (multiple culverts and raise access road) for the 100-year flood.

The consulting estimate of $\$ \square$ is based on the detailed project estimate attached and NSPI engineering staff experience.

## Barteaux Culvert Refurbishment CI 40316

Account		Description	Total
028	Consulting	Project Management	
		Hydrologic and Hydraulic Analysis	
		Detailed Design	
		Supervision	
		Subtotal for Consulting	
013	Contracts	Cofferdam installation and removal	
		Earthworks	
		Subtotal for Contracts	
011	Travel	Travel - Supervision	\$12,000
		Subtotal for Travel	\$12,000
001	Hydro Regular Labour	Environmental staff	\$9,000
		Subtotal for Hydro Regular Labour	\$9,000
094	Interest		\$7,967
095	AO		
Total			\$499,521

## Pages 90-111 have been removed due to confidentiality.

## NOVA SCOTIA

## Environment and Labour

## NOVA SCOTIA WATERCOURSE ALTERATION SPECIFICATIONS (2006)

## Culverts:

The following applies to the new installation, construction or total replacement of a single pipe culvert.

C1. The exemption under Section 5(1)(d) of the Activities Designation Regulations applies to the installation of a culvert during the period June 1 to September 30 only. Installation of a culvert outside this time frame will require formal approval. Installation of a culvert inside this time frame must be preceded with the submission of a watercourse alteration application with culvert notification indicated in Section 5A of the application at the designated District Office, Nova Scotia Department of Environment and Labour.

C 2 . The exemption applies to a single pipe culvert installation with the following maximum dimensions:
a) 1.8 metres in diameter for a single pipe culvert;
b) $\quad 18.3$ metres in length in all cases.

C3. The size of the culvert shall be based on a minimum of $1: 100$ year estimated storm flows.
C4. No fording shall take place during the installation of the culvert.
C5. Prior to the culvert installation, erosion and sediment control measures shall be installed to prevent sedimentation of the watercourse and maintained as required, these controls shall remain in place until all exposed erodible soil adjacent to both the watercourse and the road surface are stabilized within 30 m of the watercourse.

C6. The culvert shall be installed during periods of low flow. All work operations shall are be conducted in a manner to protect the watercourse from the release of silt and sediment.

C7. The culvert is to be aligned with the existing watercourse channel.
C8. Water control shall be accomplished using one of the following methods:
a) Diverting the watercourse, temporarily, through a diversionary channel.
b) Pumping the stream flow around the installation.

May 11, 2006

C9. All construction activities must be carried out in isolation of the streamflow (in the dry). Water control devices such as cofferdams or aquadams are to be used to separate the entire work area from the flowing watercourse. Cofferdams must be constructed of sandbags faced with plastic, sheet piling or other material authorized in writing by the Minister or Administrator.

If Cofferdams are to be used, there must be of sufficient height and strength to hold back the 1:2 year return rainfall event (bank full conditions).

C10. Excavation of temporary diversion channels shall be conducted in the dry from the downstream end. Diversion channels constructed in erodible or silt-forming materials are to be stabilized with protective rock, plastic sheeting, or other approved materials authorized in writing by the Minister or Administrator, before any flow is diverted.

C11. The watercourse is not to be disturbed outside the footprint of the culvert. The bottom of the culvert should be embedded at least 0.2 D (Defined as $20 \%$ or $1 / 5^{\text {th }}$ of the diameter of the culvert) below the bed of the watercourse at the upstream and downstream end of the structure. For example, 1800 mm culvert $\times 0.2 \mathrm{D}=360 \mathrm{~mm}$ of the culvert is to be embedded.)

C12. The pipe culvert must be installed at a maximum slope of $0.5 \%$ on firm ground. A soft foundation shall be replaced with clean, granular material to prevent sagging. If the natural stream gradient exceeds $0.5 \%$, an open-bottom structure or bridge shall be considered as an alternative, and a separate approval will be required.

C13. The culvert must extend a minimum of 0.3 metres beyond the upstream and downstream toe of the fill placed around the structure.

C14. When more than one length of corrugated steel culvert is required, the culverts are to be connected with couplings provided by the manufacturer. In any case, the culvert length is not to exceed 18.3 meters.

C15. All erosion protection material used in the installation of the pipe culvert must be clean, nonore bearing, non-toxic and obtained from a non- watercourse source. Stabilization of fill shall be at a maximum 2 horizontal to 1 vertical slope unless headwalls are to be used.

C16. Lumber treated with creosote must not be used in the construction or maintenance of any part of the structure. Uuntreated hemlock, tamarack/ juniper, or cedar, pre-cast concrete, corrosion resistant steel or plastic; or ACQ (Alkaline Copper Quaternary) or CCA (Chromated Copper Arsenate treated wood, if treated in accordance with Best Management Practices (BMPs) as outlined in the 1997 industry guide published jointly by the Canadian Institute of Treated Wood (CITW) and the US based Western Wood Preservers Institute are

May 11, 2006
considered acceptable materials.
C17. A designed energy dissipation plunge pool is required to prevent scour at the downstream end of the pipe culvert. The width of the pool shall be 2.0 times the culvert diameter; the length of the pool shall be 3.0 times the culvert diameter and the depth shall be a minimum of 1.0 metre.

C18. All excavated material shall be placed in a location where it will not enter the watercourse. All debris resulting from construction activities shall be disposed of at a facility which is Approved to accept the specific material. Any material not regulated by the Department shall be removed to an area where flood water will not come in contact with the debris and excavated material must be removed from the areas adjacent to the watercourse and be disposed of in a manner acceptable to the Department.

C19. The road fill at each end of a culvert must be stabilized to prevent erosion or collapse. Rip rap and or headwalls and wingwalls must be placed at both ends of the culvert to an elevation of at least one half of a pipe diameter above the top of the pipe and a minimum of one pipe diameter on each side of the culvert immediately upon completion of the culvert installation. The following uniformly-graded, stone-rip rap material is to be used for embankment protection unless alternate materials have been authorized in writing by the Minister or Administrator.

Class 1	Class 1
Local velocity up to 3m per second	At least 70\% of the riprap shall be between   200 mm and 450 mm
Class 2	Class 2
Local velocity up to 4 m per second	At least $70 \%$ of the riprap shall be between   300 mm and 760 mm
Class 3	Class 3
Local velocity up to 4.5 m per second	At least $70 \%$ of the riprap shall be between   500 mm and 1200 mm

May 11, 2006

## CI Number: 40313

Title: HYD - Annapolis Safety Pumps Refurbishment
Start Date: 2011/02
Final Cost Date: 2011/11
Function: Generation
Forecast Amount: \$387,498

## DESCRIPTION:

The powerhouse of the Annapolis Tidal Generating Station is located below sea level. Routine leakage must be pumped from the powerhouse to prevent flooding. This project consists of replacing one pump and refurbishing the two existing safety pumps at the Annapolis Tidal Generating Station. These safety pumps safeguard the Annapolis Generating Station against internal flooding in the event of an unexpected failure of the plant's primary leakage pumps.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

## Justification Criteria: Hydro

Sub Criteria: Equipment Replacement
Why do this project?
Due to the age and condition of the two existing safety pumps (installed in 1984), these pumps must be replaced / refurbished to ensure they can reliably mitigate the risks of internal flooding at the plant in the event of an unexpected failure of the plant's primary leakage pumps.

## Why do this project now?

Due to the normal operating environment that the safety pumps are located in (humid, salt laden air), they have deteriorated to the point where they are no longer able to reliably protect the Annapolis Generating Station from internal flooding if the plant's primary leakage pumps were to fail. The pumps have lasted beyond their life expectancy of 15-20 years but need replacing.

## Why do this project this way?

Procuring a new safety pump will allow for the existing pumps to be removed from service and refurbished sequentially while ultimately resulting in having a spare safety pump in inventory.


## Original Cost:

## CI 40313 - HYD Refurbishment Annapolis Safety Pumps

The following is a breakdown of costs associated the Refurbishment Annapolis Safety Pumps:

Administrative Overheads and Interest Labour
Materials
Contracts
Consulting
Other
Total


The materials estimate of \$ is based on the vendor quote attached and allowance for miscellaneous pipe and fittings.

The contracts estimate is based on NSPI engineering staff experience with similar pump refurbishment projects completed in the recent past.

## Annapolis Safety Pumps <br> Summary of Alternatives

Budget Year :	2011
Division :	Power Production
Department :	Hydro Production
Originator :	

Date :
CI Number:
Project No. :

21-Dec-10
40313


|  | Alternative | After Tax <br> WACC | PV of EVA $/$ NPV | Rank |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| A | Safety Pumps | $6.68 \%$ | 622,841 | 1 |
|  | 0 | NA | NA | NA |
|  | 0 | NA | NA | NA |
|  | 0 | NA | NA | NA |

## Recommendation :

$\square$

## Notes/Comments :

## Safety Pumps

Justification for this project is based on a capital cost of approximately $\$ 1.2$ million (includes $\$ 387 \mathrm{~K}$ for this project and $\$ 850 \mathrm{~K}$ in 2012 for replacement of the governor and controls). In the event of an unplanned failure, the replacement energy cost for 2011 is estimated to be $\$ \mathbf{2 5 4 , 8 8 0}$.
$\square$
0

0
Annapolis Safety Pumps

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	152,880	$(387,498)$	15,500	371,998	$(234,618)$	$(44,837)$	$(279,455)$	1.000	$(279,455)$	$(279,455)$
2012	-	150,840	$(851,700)$	63,828	1,159,870	$(700,860)$	$(27,174)$	$(728,034)$	0.937	$(682,446)$	$(961,901)$
2013	-	153,857	-	92,790	1,067,081	153,857	$(18,931)$	134,926	0.879	118,558	$(843,344)$
2014	-	156,934	-	85,366	981,714	156,934	$(22,355)$	134,579	0.824	110,848	$(732,496)$
2015	-	160,073	-	78,537	903,177	160,073	$(25,276)$	134,797	0.772	104,075	$(628,421)$
2016	-	163,274	-	72,254	830,923	163,274	$(28,216)$	135,058	0.724	97,747	$(530,673)$
2017	.	166,540	-	66,474	764,449	166,540	$(31,020)$	135,519	0.678	91,940	$(438,734)$
2018	-	169,870	-	61,156	703,293	169,870	$(33,701)$	136,169	0.636	86,596	$(352,138)$
2019	-	173,268	-	56,263	647,030	173,268	$(36,271)$	136,996	0.596	81,667	$(270,471)$
2020	-	176,733	-	51,762	595,267	176,733	$(38,741)$	137,992	0.559	77,109	$(193,362)$
2021	-	180,268	-	47,621	547,646	180,268	$(41,120)$	139,147	0.524	72,886	$(120,476)$
2022	-	183,873	-	43,812	503,834	183,873	$(43,419)$	140,454	0.491	68,964	$(51,512)$
2023	-	187,551	-	40,307	463,527	187,551	$(45,646)$	141,905	0.460	65,313	13,801
2024	-	191,302	-	37,082	426,445	191,302	$(47,808)$	143,494	0.431	61,909	75,710
2025	-	195,128	-	34,116	392,330	195,128	$(49,914)$	145,214	0.404	58,728	134,439
2026	-	199,030	-	31,386	360,943	199,030	$(51,970)$	147,061	0.379	55,751	190,189
2027	-	203,011	-	28,875	332,068	203,011	$(53,982)$	149,029	0.355	52,959	243,149
2028	-	207,071	-	26,565	305,502	207,071	$(55,957)$	151,114	0.333	50,338	293,486
2029	-	211,212	-	24,440	281,062	211,212	$(57,899)$	153,313	0.312	47,872	341,359
2030	-	215,437	-	22,485	258,577	215,437	$(59,815)$	155,622	0.293	45,550	386,909
2031	-	219,745	-	20,686	237,891	219,745	$(61,708)$	158,037	0.274	43,361	430,270
2032	-	224,140	-	19,031	218,860	224,140	$(63,584)$	160,557	0.257	41,294	471,564
2033	-	228,623	-	17,509	201,351	228,623	$(65,445)$	163,178	0.241	39,340	510,904
2034	-	233,196	-	16,108	185,243	233,196	$(67,297)$	165,898	0.226	37,492	548,396
2035	-	237,859	-	14,819	170,423	237,859	$(69,142)$	168,717	0.212	35,741	584,137
2036	-	242,617	-	13,634	156,790	242,617	$(70,985)$	171,632	0.199	34,082	618,218
2037	-	-	-	12,543	144,246	-	3,888	3,888	0.186	724	618,942
2038	-	-	-	11,540	132,707	-	3,577	3,577	0.174	624	619,566
2039	-	-	-	10,617	122,090	-	3,291	3,291	0.164	538	620,105
2040	-	-	-	9,767	112,323	-	3,028	3,028	0.153	464	620,569
2041	-	-	-	8,986	103,337	-	2,786	2,786	0.144	400	620,969
2042	-	-	-	8,267	95,070	-	2,563	2,563	0.135	345	621,315
2043	-	-	-	7,606	87,465	-	2,358	2,358	0.126	298	621,612
2044	-	-	-	6,997	80,467	-	2,169	2,169	0.118	257	621,869
2045	-	-	-	6,437	74,030	-	1,996	1,996	0.111	221	622,090
2046	-	-	-	5,922	68,108	-	1,836	1,836	0.104	191	622,281
2047	-	-	-	5,449	62,659	-	1,689	1,689	0.098	165	622,446
2048	-	-	-	5,013	57,646	-	1,554	1,554	0.091	142	622,588
2049	-	-	-	4,612	53,035	-	1,430	1,430	0.086	122	622,711
2050	-	-	-	4,243	48,792	-	1,617	1,617	0.080	130	622,841
Total	-	4,984,330.4	(1,239,198.0)	1,190,406.2	14,309,270.3	3,745,132.4	(1,178,432.9)	2,566,699.5	14.768	622,840.5	8,139,455.0



Pages 122-126 have been removed due to confidentiality.

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40301

Title: HYD - Big Falls Spillway - Walkway Replacement
Start Date: 2011/05
Final Cost Date: 2011/12
Function: Generation
Forecast Amount: \$267,491

## DESCRIPTION:

This project consists of refurbishing the steel and timber walkway over the spillway at Big Falls dam to meet current design standards.

Summary of Related CI's +/- 2 years:
2010 - 38859 HYD Big Falls Headgate Replacement \$5,941,366

## JUSTIFICATION:

Justification Criteria: Health \& Safety

## Why do this project?

Using the steel and timber walkway over the spillway at Big Falls dam is critical to managing the dam site. However, the existing walkway is uneven and misaligned due to ice loads. This structure no longer meets current design standards.

## Why do this project now?

Due to the unevenness and misalignment of the existing steel and timber walkway and potential for safety issues, the walkway must be refurbished. Personnel are required to access the walkway both day and night and in a variety of weather conditions. Personnel are aware of the issue and take the required precautions when accessing the walkway.

Why do this project this way?
Refurbishing the walkway to meet current design standards is the most cost-effective means of providing safe access to operate the spill planks in the spillway at Big Falls dam.


## CI Number: 12079

Title: HYD - SHH - RUF Unit 1\&2 Runner Replacement
Start Date: 2011/04

Final Cost Date: 2012/10
Function: Generation

Forecast Amount: \$831,591

## DESCRIPTION:

This project consists of replacing the runners at Ruth Falls Unit\#1 and Unit\#2 with runners of a modern and more efficient design. Estimates are based upon similar runner replacements in recent years.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Hydro
Sub Criteria: Equipment Replacement

## Why do this project?

The existing runners at Ruth Falls Unit\#1 and Unit\#2 have a history of cracking and cavitation. This requires extended outages to undertake weld repairs. The design of the existing runners is such that the stress cracks are prone to re-appear. Anytime cracks form in a runner, there is potential for the runner to degrade while in operation. This would result in an unscheduled outage of the entire Ruth Falls Generating Station and could result in damage to the Units and water passage.

## Why do this project now?

The existing runners at Ruth Falls have reached the end of their useful life. Procurement of materials in 2011 and replacement of the runners in 2012 is required.

## Why do this project this way?

Replacing the runners at Ruth Falls Unit\#1 and Unit\#2 with runners of a modern design is the only practical means of ensuring the long term integrity and performance of these runners.


## Ruth Falls Runner 1 \& 2 Replacement

 Summary of Alternatives| Budget Year : | 2011 |
| :---: | :---: |
| Division : | Power Production |
| Department : | Hydro Production |
| Originator : |  |

Date :
CI Number:
Project No. :

21-Dec-10
12079


	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Runner Replacement	6.68\%	3,899,723	1	\#NUM!	4.7 years
	0	NA	NA	NA	\#NUM!	0.0 years
	0	NA	NA	NA	\#NUM!	0.0 years
	0	NA	NA	NA	\#NUM!	0.0 years

Recommendation :

Replace the runners in Unit \#1 and Unit \#2.
Notes/Comments :
Runner Replacement
Justification of this project is based on a capital cost of $\$ 831,591$ and an avoided capacity loss of $11,000 \mathrm{MWh}$. Total avoided replacement engery cost for both 2011 and 2012 is $\$ 645,700$.

0

## 0

0
Ruth Falls Runner 1 \& 2 Replacement

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	425,700	$(77,171)$	6,174	70,997	348,529	$(136,382)$	212,147	1.000	212,147	212,147
2012	-	421,300	$(754,419)$	66,033	759,383	$(333,119)$	$(110,264)$	$(443,383)$	0.937	$(415,619)$	$(203,472)$
2013	-	429,726	-	60,751	698,632	429,726	$(114,382)$	315,344	0.879	277,088	73,616
2014	-	438,321	-	55,891	642,742	438,321	$(118,664)$	319,656	0.824	263,290	336,906
2015	-	447,087	-	51,419	591,322	447,087	$(122,657)$	324,430	0.772	250,489	587,395
2016	-	456,029	-	47,306	544,017	456,029	$(126,704)$	329,325	0.724	238,347	825,742
2017	-	465,149	-	43,521	500,495	465,149	$(130,705)$	334,445	0.678	226,896	1,052,637
2018	-	474,452	-	40,040	460,456	474,452	$(134,668)$	339,784	0.636	216,084	1,268,721
2019	-	483,941	-	36,836	423,619	483,941	$(138,602)$	345,339	0.596	205,864	1,474,586
2020	-	493,620	-	33,890	389,730	493,620	$(142,516)$	351,104	0.559	196,195	1,670,781
2021	-	503,492	-	31,178	358,551	503,492	$(146,417)$	357,075	0.524	187,038	1,857,819
2022	-	513,562	-	28,684	329,867	513,562	$(150,312)$	363,250	0.491	178,358	2,036,177
2023	-	523,834	-	26,389	303,478	523,834	$(154,208)$	369,626	0.460	170,124	2,206,301
2024	-	534,310	-	24,278	279,200	534,310	$(158,110)$	376,200	0.431	162,308	2,368,609
2025	-	544,996	-	22,336	256,864	544,996	$(162,025)$	382,972	0.404	154,883	2,523,492
2026	-	555,896	-	20,549	236,315	555,896	$(165,958)$	389,939	0.379	147,826	2,671,318
2027	-	567,014	-	18,905	217,409	567,014	$(169,914)$	397,100	0.355	141,115	2,812,433
2028	-	578,355	-	17,393	200,017	578,355	$(173,898)$	404,456	0.333	134,729	2,947,162
2029	-	589,922	-	16,001	184,015	589,922	$(177,915)$	412,006	0.312	128,650	3,075,812
2030	-	601,720	-	14,721	169,294	601,720	$(181,970)$	419,750	0.293	122,861	3,198,673
2031	-	613,755	-	13,544	155,751	613,755	$(186,065)$	427,689	0.274	117,346	3,316,019
2032	-	626,030	-	12,460	143,291	626,030	$(190,207)$	435,823	0.257	112,090	3,428,109
2033	-	638,550	-	11,463	131,827	638,550	$(194,397)$	444,153	0.241	107,080	3,535,189
2034	-	651,321	-	10,546	121,281	651,321	$(198,640)$	452,681	0.226	102,302	3,637,490
2035	-	664,348	-	9,702	111,579	664,348	$(202,940)$	461,408	0.212	97,745	3,735,235
2036	-	677,635	-	$(7,298)$	118,876	1,083,235	$(212,329)$	870,906	0.199	172,940	3,908,175
2037	-	-	-	$(22,938)$	141,814	-	$(7,111)$	$(7,111)$	0.186	$(1,324)$	3,906,852
2038	-	-	-	$(21,103)$	162,917	-	$(6,542)$	$(6,542)$	0.174	$(1,141)$	3,905,710
2039	-	-	-	$(19,415)$	182,332	-	$(6,019)$	$(6,019)$	0.164	(984)	3,904,726
2040	-	-	-	$(17,861)$	200,193	-	$(5,537)$	$(5,537)$	0.153	(849)	3,903,877
2041	-	-	-	$(16,433)$	216,626	-	$(5,094)$	$(5,094)$	0.144	(732)	3,903,145
2042	-	-	-	$(15,118)$	231,744	-	$(4,687)$	$(4,687)$	0.135	(631)	3,902,513
2043	-	-	-	$(13,909)$	245,652	-	$(4,312)$	$(4,312)$	0.126	(544)	3,901,969
2044	-	-	-	$(12,796)$	258,448	-	$(3,967)$	$(3,967)$	0.118	(470)	3,901,499
2045	-	-	-	$(11,772)$	270,220	-	$(3,649)$	$(3,649)$	0.111	(405)	3,901,094
2046	-	-	-	$(10,830)$	281,051	-	$(3,357)$	$(3,357)$	0.104	(349)	3,900,745
2047	-	-	-	$(9,964)$	291,014	-	$(3,089)$	$(3,089)$	0.098	(301)	3,900,444
2048	-	-	-	$(9,167)$	300,181	-	$(2,842)$	$(2,842)$	0.091	(260)	3,900,184
2049	.	-	-	$(8,433)$	308,615	-	$(2,614)$	$(2,614)$	0.086	(224)	3,899,960
2050	-	-	-	$(7,759)$	316,374	-	$(2,958)$	$(2,958)$	0.080	(238)	3,899,723
Total	-	13,920,065	(831,590)	515,216.4	11,806,188.1	13,494,075.3	(4,162,626.3)	9,331,449.0	14.8	3,899,723	109,189,512



## CI Number: 39529

Title: POT - Steam Turbine Overhaul 2011
Start Date: 2011/03
Final Cost Date: 2011/12

Function:
Forecast Amount: \$3,749,830

## DESCRIPTION:

The Point Tupper Unit \#2 steam turbine consists of high pressure (HP), intermediate pressure (IP) and low pressure (LP) cylinders which convert the energy from the high pressure/high temperature steam received from the boiler to mechanical energy which rotates Unit \#2 generator resulting in the production of electrical energy.

Unit \#2 at the Point Tupper Generating Station has a design operating temperature of approximately 1000 degrees Fahrenheit and an operating pressure of 1800 psi at the high-pressure turbine. At this operating temperature and pressure, the springback seals, blade closers, bolting, erosion shields, dummy springs, oil baffles, and several other components within the HP section of the turbine and turbine valves have a design service life of 175,000 hours. These turbine components require replacement to restore them to Original Equipment Manufacturer(OEM) specifications and ensure continued reliable operation of the Point Tupper Unit \#2 turbine/generator.

Summary of Related CI's +/- 2 years
2011 - 39803 POT - Unit\#2 Generator and Auxiliaries Major Refurbishment \$2,042,450
2011-28289 POT - Turbine Electro-Hydraulic Generator Replacement \$687,150
2011-38108 POT - AVR Refurbishment \$128,270
2011-28294 POT - Turning Gear Assembly Overhaul \$52,610

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Equipment Replacement

## Why do this project?

Refurbishing the steam turbine during the planned major outage in 2011 is required in accordance with technical and OEM recommendations to restore components to an acceptable operating condition.

## Why do this project now?

Replacement of several steam turbine components in 2011 is required due to the accumulated service hours and OEM recommendations. The OEM recommendations are based on inspection results from the last major outage in 2005. Completing this project in 2011 will allow the Unit to continue to operate safely and reliably.

## Why do this project this way?

Steam turbine components require replacement and/or refurbishment based on service hours in order to ensure reliable unit performance. Completing the project scope in a planned manner is the most cost effective approach.

CI Number : 39529

Parent CI Number	$:$
Cost Centre	$: 351$

## Approved Date

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		36,609	0	36,609
095		095-Thermal Regular Labour AO		2,401	0	2,401
095		095-Thermal Overtime Labour AO		600	0	600
095		095-Thermal \& Hydro Contracts AO			0	
095		095-Thermal Term Labour AO		2,401	0	2,401
001	010	001 - THERMAL Regular Labour	010-SGP - Turbo Gen.Instal.	10,000	0	10,000
002	010	002 - THERMAL Overtime Labour	010 - SGP - Turbo Gen.Instal.	5,000	0	5,000
004	010	004 - THERMAL Term Labour	010 - SGP - Turbo Gen.Instal.	10,000	0	10,000
012	010	012 - Materials	010 - SGP - Turbo Gen.Instal.		0	
013	010	013 - POWER PRODUCTION Contracts	010 - SGP - Turbo Gen.Instal.		0	
011	085	011 - Travel Expense	085 Design	1,000	0	1,000
041	085	041 - Meals \& Entertainment	085 Design	1,000	0	1,000
			Total Cost: Original Cost:	3,749,830	0	3,749,830

## CI 39529 - POT Steam Turbine Major Overhaul

The following is a breakdown of costs associated with the Steam Turbine Major Overhaul:


The contracts estimate of \$ is based on the cost support information provided and the vendor estimate attached.

The materials estimate is based on the vendor estimates attached.

Pages 137-206 have been removed due to confidentiality.

## Turbine major 2011 Summary of Alternatives

Budget Year :	2011
Division :	Power Production
Department :	Point Tupper Generating Station
Originator :	

Date :
CI Number:
Project No. :

21-Dec-10
39529


	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Perform major overhaul	6.68\%	21,023,722	1	46.04\%	4.9 years
B	Test 2	6.68\%	0	2	\#NUM!	0.0 years
C	Test 3	6.68\%	0	2	\#NUM!	0.0 years
D	Test 4	6.68\%	0	2	\#NUM!	0.0 years

## Recommendation :

Complete the major overhaul.

Notes/Comments :
Perform Major Overhaul
Justification of this project is based on a capital cost of $\$ 3,749,830$ with an increasing risk of un-planned failure over the life of the asset if an overhaul is not completed in 2011. Capacity loss would be 150 MW for four months in the event of an unplanned failure. Total avoided costs for 2011 and 2012 are \$1,199,336 and \$1,351,329 respectively. Total avoided costs are based on total avoided replacement energy cost and avoided labour / material costs.

## Test 2

## Test 3

## Test 4

Turbine major 2011
Turbine major 2011 major overhaul vs Do nothing

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	1,199,336	(3,749,830)	149,993	3,599,837	$(2,550,494)$	$(342,859)$	$(2,893,353)$	1.000	$(2,893,353)$	$(2,893,353)$
2012	-	1,351,329	-	287,987	3,311,850	1,351,329	$(330,207)$	1,021,122	0.937	957,182	$(1,936,171)$
2013	-	1,521,941	-	264,948	3,046,902	1,521,941	$(389,668)$	1,132,273	0.879	994,913	$(941,257)$
2014	-	1,702,345	-	243,752	2,803,150	1,702,345	$(452,647)$	1,249,698	0.824	1,029,333	88,076
2015	-	1,893,037	-	224,252	2,578,898	1,893,037	$(517,323)$	1,375,714	0.772	1,062,175	1,150,251
2016	-	2,307,394	-	206,312	2,372,586	2,307,394	$(651,335)$	1,656,058	0.724	1,198,562	2,348,813
2017	-	2,532,177	-	189,807	2,182,779	2,532,177	$(726,135)$	1,806,042	0.678	1,225,264	3,574,077
2018	-	2,769,487	-	174,622	2,008,157	2,769,487	$(804,408)$	1,965,079	0.636	1,249,681	4,823,758
2019	-	3,019,955	-	160,653	1,847,504	3,019,955	$(886,384)$	2,133,571	0.596	1,271,871	6,095,629
2020	-	3,284,240	-	147,800	1,699,704	3,284,240	$(972,296)$	2,311,944	0.559	1,291,904	7,387,533
2021	-	3,563,034	-	135,976	1,563,728	3,563,034	$(1,062,388)$	2,500,646	0.524	1,309,852	8,697,384
2022	-	3,857,062	-	125,098	1,438,629	3,857,062	$(1,156,909)$	2,700,153	0.491	1,325,792	10,023,176
2023	-	4,167,085	-	115,090	1,323,539	4,167,085	$(1,256,118)$	2,910,966	0.460	1,339,804	11,362,980
2024	-	4,493,900	-	105,883	1,217,656	4,493,900	$(1,360,285)$	3,133,615	0.431	1,351,968	12,714,948
2025	-	4,838,342	-	97,412	1,120,243	4,838,342	$(1,469,688)$	3,368,654	0.404	1,362,368	14,077,315
2026	-	5,201,288	-	89,619	1,030,624	5,201,288	$(1,584,617)$	3,616,671	0.379	1,371,083	15,448,399
2027	-	5,583,656	-	82,450	948,174	5,583,656	$(1,705,374)$	3,878,282	0.355	1,378,197	16,826,596
2028	-	5,986,407	-	75,854	872,320	5,986,407	$(1,832,272)$	4,154,136	0.333	1,383,788	18,210,384
2029	-	6,410,551	-	69,786	802,534	6,410,551	$(1,965,637)$	4,444,914	0.312	1,387,935	19,598,319
2030	-	6,857,144	-	64,203	738,332	6,857,144	$(2,105,812)$	4,751,332	0.293	1,390,715	20,989,034
2031	-	-	-	59,067	679,265	-	18,311	18,311	0.274	5,024	20,994,058
2032	-	-	-	54,341	624,924	-	16,846	16,846	0.257	4,333	20,998,391
2033	-	-	-	49,994	574,930	-	15,498	15,498	0.241	3,736	21,002,127
2034	-	-	-	45,994	528,936	-	14,258	14,258	0.226	3,222	21,005,349
2035	-	-	-	42,315	486,621	-	13,118	13,118	0.212	2,779	21,008,128
2036	-	-	-	38,930	447,691	-	12,068	12,068	0.199	2,396	21,010,525
2037	-	-	-	35,815	411,876	-	11,103	11,103	0.186	2,067	21,012,591
2038	-	-	-	32,950	378,926	-	10,215	10,215	0.174	1,782	21,014,374
2039	-	-	-	30,314	348,612	-	9,397	9,397	0.164	1,537	21,015,911
2040	-	-	-	27,889	320,723	-	8,646	8,646	0.153	1,326	21,017,236
2041	-	-	-	25,658	295,065	-	7,954	7,954	0.144	1,143	21,018,379
2042	-	-	-	23,605	271,460	-	7,318	7,318	0.135	986	21,019,365
2043	-	-	-	21,717	249,743	-	6,732	6,732	0.126	850	21,020,215
2044	-	-	-	19,979	229,764	-	6,194	6,194	0.118	733	21,020,948
2045	-	-	.	18,381	211,382	-	5,698	5,698	0.111	632	21,021,581
2046	-	-	-	16,911	194,472	-	5,242	5,242	0.104	545	21,022,126
2047	-	-	-	15,558	178,914	-	4,823	4,823	0.098	470	21,022,596
2048	-	-	-	14,313	164,601	-	4,437	4,437	0.091	406	21,023,002
2049	-	-	-	13,168	151,433	-	4,082	4,082	0.086	350	21,023,352
2050	-		-	12,115	139,318	-	4,618	4,618	0.080	371	21,023,722
Total	-	72,539,709	(3,749,830)	3,610,512	43,395,800	68,789,879	$(21,385,806)$	47,404,073	14.768	21,023,722	587,939,867



## CI Number: 38826

Title: POT - Distribution Control System (DCS) Upgrade
Start Date: 2011/05
Final Cost Date: 2011/12
Function: Generation
Forecast Amount: \$1,287,302

## DESCRIPTION:

This project is for the upgrade of the plant's Distributed Control System (DCS) to provide a reliable control system that is designed to current standards and can be maintained for the next equipment life cycle.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

The existing DCS technology and equipment is obsolete and no longer supported by the Original Equipment Manufacturer (OEM). This project must be completed to ensure reliable operation of the Point Tupper Generating Station.

## Why do this project now?

The existing DCS is a Bailey Net-90 that was installed in 1987 as part of the coal conversion of Unit \#2. Although this Net-90 system has undergone minor upgrades to keep up with advancing technology, a number of modules in the control and data acquisition system are now obsolete and are no longer supported by the OEM. This project must be completed now to mitigate the risk of reduced plant reliability. The major outage scheduled for 2011 provides an adequate outage window to complete this project.

## Why do this project this way?

The existing equipment is obsolete and no longer supported by the OEM. Replacement with equipment designed to current standards is the only option.


## Original Cost:

## CI 38826 - POT DCS Upgrade

The following is a breakdown of costs associated with the DCS Upgrade:
Administrative Overheads and Interest Labour
Materials
Contracts
Other
Total


The materials estimate of is based on the attached vendor quotations and the detailed estimate attached. A contingency of $10 \%$, or is included in the materials estimate.

The contracts estimate $\{$ is based on the attached vendor quotations and detailed project estimate attached. A contingency of $10 \%$, or $\square$ is included in the contracts estimate.

The labour estimate of $\$ 257,569$ is based on the detailed project estimate attached.

## CI 38826 - Point Tupper - DCS Upgrade of BMS/HMI



Pages 214-280 have been removed due to confidentiality.

## DCS upgrade Summary of Alternatives

Budget Year:	2011
Division :	Power Production
Department:	Point Tupper Generating Station
Originator:	

Date :
CI Number:
Project No.:

22-Dec-10
38826


	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Upgrade DCS	6.68\%	3,989,403	1	27.90\%	7.3 years
B	Test 2	6.68\%	0	2	\#NUM!	0.0 years
C	Test 3	6.68\%	0	2	\#NUM!	0.0 years
D	Test 4	6.68\%	0	2	\#NUM!	0.0 years

## Recommendation :

Complete the upgrade to the DCS

Notes/Comments :

## Upgrade DCS

Justification of this project is based on a capital cost of $\$ 1,287,302$ and an increasing risk of failure over the life of the asset if the upgrade is not completed in 2011. Estimated capacity loss is 150 MW for three months in the event of an un-planned failure. Total avoided costs for 2011 and 2012 are $\$ 194,186$ and $\$ 233,810$ respectively. Total avoided costs are based on total avoided replacement energy costs and total avoided labour/material costs.

## Test 2

## Test 3

Test 4

DCS upgrade

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	194,186	(1,287,302)	51,492	1,235,810	(1,093,116)	$(47,001)$	(1,140,117)	1.000	$(1,140,117)$	(1,140,117)
2012	-	233,810	-	98,865	1,136,945	233,810	$(42,029)$	191,781	0.937	179,772	$(960,345)$
2013	-	278,713	-	90,956	1,045,990	278,713	$(58,205)$	220,508	0.879	193,758	$(766,587)$
2014	-	325,471	-	83,679	962,310	325,471	$(75,121)$	250,349	0.824	206,204	$(560,383)$
2015	-	374,145	-	76,985	885,326	374,145	$(92,120)$	282,025	0.772	217,749	$(342,634)$
2016	-	477,511	-	70,826	814,499	477,511	$(126,072)$	351,439	0.724	254,352	$(88,283)$
2017	-	532,341	-	65,160	749,340	532,341	$(144,826)$	387,515	0.678	262,900	174,617
2018	-	589,366	-	59,947	689,392	589,366	$(164,120)$	425,246	0.636	270,433	445,050
2019	-	648,660	-	55,151	634,241	648,660	$(183,988)$	464,672	0.596	277,002	722,052
2020	-	710,302	-	50,739	583,502	710,302	$(204,464)$	505,838	0.559	282,660	1,004,711
2021	-	774,372	-	46,680	536,822	774,372	$(225,585)$	548,788	0.524	287,458	1,292,169
2022	-	840,954	-	42,946	493,876	840,954	$(247,383)$	593,571	0.491	291,447	1,583,616
2023	-	910,134	-	39,510	454,366	910,134	$(269,893)$	640,240	0.460	294,677	1,878,294
2024	-	982,000	-	36,349	418,017	982,000	$(293,152)$	688,849	0.431	297,197	2,175,491
2025	-	1,056,647	-	33,441	384,575	1,056,647	$(317,194)$	739,453	0.404	299,053	2,474,544
2026	-	1,134,168	-	30,766	353,809	1,134,168	$(342,055)$	792,113	0.379	300,291	2,774,835
2027	-	1,214,663	-	28,305	325,504	1,214,663	$(367,771)$	846,892	0.355	300,954	3,075,789
2028	-	1,298,234	-	26,040	299,464	1,298,234	$(394,380)$	903,854	0.333	301,084	3,376,873
2029	-	1,384,987	-	23,957	275,507	1,384,987	$(421,919)$	963,068	0.312	300,720	3,677,593
2030	-	1,475,033	-	22,041	253,466	1,475,033	$(450,428)$	1,024,605	0.293	299,902	3,977,495
2031	-	-	-	20,277	233,189	-	6,286	6,286	0.274	1,725	3,979,220
2032	-	-	-	18,655	214,534	-	5,783	5,783	0.257	1,487	3,980,707
2033	-	-	-	17,163	197,371	-	5,320	5,320	0.241	1,283	3,981,990
2034	-	-	-	15,790	181,582	-	4,895	4,895	0.226	1,106	3,983,096
2035	-	-	-	14,527	167,055	-	4,503	4,503	0.212	954	3,984,050
2036	-	-	-	13,364	153,691	-	4,143	4,143	0.199	823	3,984,873
2037	-	-	-	12,295	141,395	-	3,812	3,812	0.186	709	3,985,582
2038	-	-	-	11,312	130,084	-	3,507	3,507	0.174	612	3,986,194
2039	-	-	-	10,407	119,677	-	3,226	3,226	0.164	528	3,986,722
2040	-	-	-	9,574	110,103	-	2,968	2,968	0.153	455	3,987,177
2041	-	-	-	8,808	101,295	-	2,731	2,731	0.144	392	3,987,569
2042	-	-	-	8,104	93,191	-	2,512	2,512	0.135	338	3,987,907
2043	-	-	-	7,455	85,736	-	2,311	2,311	0.126	292	3,988,199
2044	-	-	-	6,859	78,877	-	2,126	2,126	0.118	252	3,988,451
2045	-	-	-	6,310	72,567	-	1,956	1,956	0.111	217	3,988,668
2046	-	-	-	5,805	66,761	-	1,800	1,800	0.104	187	3,988,855
2047	-	-	-	5,341	61,421	-	1,656	1,656	0.098	161	3,989,017
2048	-	-	-	4,914	56,507	-	1,523	1,523	0.091	139	3,989,156
2049	-	-	-	4,521	51,986	-	1,401	1,401	0.086	120	3,989,276
2050	-		-	4,159	47,827	-	1,585	1,585	0.080	127	3,989,403
Total	-	15,435,696	(1,287,302)	1,239,475	14,897,609	14,148,394	$(4,403,661)$	9,744,733	14.768	3,989,403	104,500,891



## CI Number: 35083

Title: LIN 2011 Ash Site Sealing and Capping
Start Date: 2011/03
Final Cost Date: 2011/12
Function: Generation
Forecast Amount: \$1,112,451

## DESCRIPTION:

This project is for Phase 1 of permanent capping of the ash site as defined in the 2009 Lingan Ash Laydown management plan (approximately $31,000 \mathrm{sq} \mathrm{ft}$ ). The work completed under this project will serve the long-term goal of returning the Lingan Ash Management Site to a re-vegetated site. The work is required to reduce potential dusting problems and ensure the water quality of the runoff returned to the lagoon meets regulatory criteria.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

The capping of the completed areas of the active cells within the Ash Management Site is a requirement stipulated in the operating permit issued by the Nova Scotia Department of Environment (NSE) to the Lingan Generating Station.

A revised ash lay down management plan was created in 2009. Phase 1 of the 16 identified phases is ready for permanent capping.

## Why do this project now?

The operating permit issued to the Lingan Generating Station requires that all completed areas of the Ash Management Site be covered with a layer of natural till and hydro seeded to minimize erosion. This project entails a long term detailed capping plan using a low permeable clay material, geotextile and top soil to seal the ash from downward migration of surface water.

The area to be capped under Phase 1 of this project has reached capacity and must be capped.

## Why do this project this way?

Incorporating the recommendations of the engineering consultant's report will meet the hydraulic conductivity limits and requirements defined in the operating permit.

- LIN 2011 Ash Site Sealing and Capping

Project Number


Original Cost:

## CI 35083-2011 Ash Site Sealing and Capping

The following is a breakdown of costs associated with the 2011 Ash Site Sealing and Capping

Administrative Overheads and Interest Labour
Contracts
Consulting
Total


The Contracts estimate of \$ is based on the cost support information provided in the attached reports and detailed project estimate.

The Consulting estimate for $\$$ is for preparation of tender documents, evaluation of tenders and preparation of as-built drawings. This estimate is based on NSPI engineering staff experience on similar projects.

Station:	LINGAN GENERATING STATION
CI Number:	35083
Project:	LIN -Ash Capping
Project    Description: Capping of Lingan Phase 1   Scope Project to put permanent cap on phase 1 location. Assumption is that   Geosynthetic clay liner (GCL) be used (vs compacted clay liner) to   reduce clay regts / cost. Assumption is that no additional drainage   diversion for non-ash impacted run off is included in this scope.	



Pages 288-338 have been removed due to confidentiality.

## CI Number: 40271

Title: LIN2 Boiler Refurbishment

Start Date:	$2011 / 01$
Final Cost Date:	$2011 / 09$
Function:	Generation
Forecast Amount:	$\$ 1,093,704$

## DESCRIPTION:

The scope of work for this project is to inspect, repair and replace tubes, tube bends and shields on the LTSH (Low Temperature Super Heater) and HTSH (High Temperature Super Heater) tubes of the Unit \#2 boiler and replace 11 sections of the boiler division wall. Tubes and tube bends will be replaced in the locations where the thickness readings are below American Society of Mechanical Engineers (ASME) specifications. The scope to replace shields will protect the tubes from further ash erosion. As well, shields with armor coating will be installed in high wear locations to improve tube life and increase tube protection.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

Ongoing asset management activities have identified the requirement for boiler component replacement to maintain the long term reliability of the boiler and mitigate the risk of unplanned outages due to LTSH, HTSH and division wall tube leaks.

## Why do this project now?

A condition assessment of the Unit \#2 boiler was completed in June 2010 and identified the need to complete this project scope during the planned outage in 2011. The planned outage for Unit \#2 in 2011 is of sufficient duration to complete the work.

## Why do this project this way?

The work will be completed in the most cost effective manner to extend the life of the LTSH and HTSH by replacing the tubes, tube bends and shields, the risk of tube leaks in the LTSH and HTSH and an unplanned outage to the Unit 2 boiler will be reduced. Based on boiler life cycle assessments, upgrades are necessary to main boiler reliable operations.


Original Cost:

## CI 40271 - LIN2 Boiler Refurbishment

The following is a breakdown of costs associated with the LIN2 Boiler Refurbishment:
Administrative Overheads and Interest Labour
Materials
Contracts
Total


The contracts estimate of \$ lis based on the attached detailed cost estimate, vendor estimates and NSPI engineering staff experience with similar projects.

The materials estimate of jis based on the attached vendor estimate and similar work completed in 2010 on the Lingan Unit \#1 boiler.

Station:	LINGAN GENERATING STATION
CI Number:	40271

Project: LIN2 - Boiler Refurbishment - Planned Outage

Project
Description:
Replace division wall panels. Inspect and repair / replace tubes and bends AR, install armoured shields in LTSH


Estimate Assumptions:
Division Wall :
(10) panels $\times 12$ ' in length $X 12$ tubes wide
(1) panel $\times 12^{\prime}$ in length $X 13$ tubes wide
(2) loose finned tubes $\times 12$ ' in length

Subcontract:

General:
Tubes, Bends Shields - estimate only - inspection will determine specific replace / repair

Pages 343-355 have been removed due to confidentiality.

## LIN2-Boiler Refurbishment <br> Summary of Alternatives

Budget Year :	2011
Division :	Power Production
Department :	Lingan
Originator :	

Date :
CI Number:
Project No. :

21-Sep-10
40271


	Alternative	After Tax   WACC	PV of EVA $/$ NPV	Rank	
A	Refurbish LIN2 Boiler	$6.68 \%$	$1,776,833$	1	IRR
B	Test 2	$6.68 \%$	0	Disc Pay	
C	Test 3	$6.68 \%$	0	2	
D	Test 4	$6.68 \%$	0	2	129.06\%
2.8 years					
\#NUM!	0.0 years				
\#NUM!	0.0 years				
\#NUM!	0.0 years				

## Recommendation :

Refurbish LIN2 Boiler

## Notes/Comments :

## Refurbish LIN2 Boiler

Justification of this project is based on a capital cost of $\$ 1,093,704$ and a high likelihood of failure if refurbishment is not completed in 2011. In the event of a failure, the capacity loss would be 154 MW for a total of approximately 54 hours. The avoided replacement energy costs for 2011 and 2012 are $\$ 824,555$ and $\$ 993,900$ respectively.

## Test 2

## Test 3

## Test 4

LIN2-Boiler Refurbishment

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	824,555.0	$(1,093,704.0)$	43,748.2	1,049,955.8	(269,149.0)	(254,293.8)	(523,442.8)	1.000	(523,442.8)	(523,442.8)
2012	-	993,900.0	-	83,996.5	965,959.4	993,900.0	$(282,236.7)$	711,663.3	0.936	665,852.6	142,409.8
2013	-	1,006,569.3	-	77,276.7	888,682.6	1,006,569.3	$(288,080.7)$	718,488.6	0.875	628,965.8	771,375.6
2014	-	1,019,406.3	-	71,094.6	817,588.0	1,019,406.3	$(294,117.6)$	725,288.6	0.819	594,048.0	1,365,423.6
2015	-	567,904.7	-	65,407.0	752,181.0	567,904.7	$(155,774.3)$	412,130.4	0.766	315,826.7	1,681,250.3
2016	-	-	-	60,174.5	692,006.5	-	18,654.1	18,654.1	0.717	13,374.9	1,694,625.3
2017	-	-	-	55,360.5	636,646.0	-	17,161.8	17,161.8	0.671	11,512.9	1,706,138.1
2018	-	-	-	50,931.7	585,714.3	-	15,788.8	15,788.8	0.628	9,910.0	1,716,048.1
2019	-	-	-	46,857.1	538,857.2	-	14,525.7	14,525.7	0.587	8,530.3	1,724,578.5
2020	-	-	-	43,108.6	495,748.6		13,363.7	13,363.7	0.549	7,342.7	1,731,921.2
2021	-	-	-	39,659.9	456,088.7	-	12,294.6	12,294.6	0.514	6,320.5	1,738,241.7
2022	-	-	-	36,487.1	419,601.6	-	11,311.0	11,311.0	0.481	5,440.5	1,743,682.2
2023	-	-	-	33,568.1	386,033.5	-	10,406.1	10,406.1	0.450	4,683.1	1,748,365.2
2024	-	.	-	30,882.7	355,150.8	-	9,573.6	9,573.6	0.421	4,031.1	1,752,396.3
2025	-	-	-	28,412.1	326,738.7	-	8,807.7	8,807.7	0.394	3,469.9	1,755,866.2
2026	-	-	-	26,139.1	300,599.6	-	8,103.1	8,103.1	0.369	2,986.8	1,758,853.0
2027	-	-		24,048.0	276,551.7	-	7,454.9	7,454.9	0.345	2,571.0	1,761,424.0
2028	-	-	-	22,124.1	254,427.5	-	6,858.5	6,858.5	0.323	2,213.0	1,763,637.0
2029	-	-	-	20,354.2	234,073.3	-	6,309.8	6,309.8	0.302	1,904.9	1,765,542.0
2030	-	-	-	18,725.9	215,347.5	-	5,805.0	5,805.0	0.282	1,639.7	1,767,181.7
2031	-	-	-	17,227.8	198,119.7	-	5,340.6	5,340.6	0.264	1,411.4	1,768,593.1
2032	-	-	-	15,849.6	182,270.1	-	4,913.4	4,913.4	0.247	1,214.9	1,769,808.1
2033	-	-	-	14,581.6	167,688.5	-	4,520.3	4,520.3	0.231	1,045.8	1,770,853.9
2034	-	-	-	13,415.1	154,273.4	-	4,158.7	4,158.7	0.216	900.2	1,771,754.0
2035	-	-	-	12,341.9	141,931.5	-	3,826.0	3,826.0	0.203	774.9	1,772,528.9
2036	-	-	-	11,354.5	130,577.0	-	3,519.9	3,519.9	0.189	667.0	1,773,195.9
2037	-	-	-	10,446.2	120,130.8	-	3,238.3	3,238.3	0.177	574.1	1,773,770.0
2038	-	-	-	9,610.5	110,520.4	-	2,979.2	2,979.2	0.166	494.2	1,774,264.2
2039	-	-	-	8,841.6	101,678.8	-	2,740.9	2,740.9	0.155	425.4	1,774,689.6
2040	-	-	-	8,134.3	93,544.5	-	2,521.6	2,521.6	0.145	366.2	1,775,055.8
2041	-	-	-	7,483.6	86,060.9	-	2,319.9	2,319.9	0.136	315.2	1,775,371.0
2042	-	-	-	6,884.9	79,176.0	-	2,134.3	2,134.3	0.127	271.3	1,775,642.3
2043	.	-	.	6,334.1	72,841.9	-	1,963.6	1,963.6	0.119	233.5	1,775,875.8
2044	-	-	-	5,827.4	67,014.6	-	1,806.5	1,806.5	0.111	201.0	1,776,076.9
2045	.	.	.	5,361.2	61,653.4	-	1,662.0	1,662.0	0.104	173.0	1,776,249.9
2046	-	-	-	4,932.3	56,721.1	-	1,529.0	1,529.0	0.097	148.9	1,776,398.9
2047	-	-	-	4,537.7	52,183.5	-	1,406.7	1,406.7	0.091	128.2	1,776,527.1
2048	-	-	-	4,174.7	48,008.8	-	1,294.1	1,294.1	0.085	110.4	1,776,637.4
2049	-	-	-	3,840.7	44,168.1	-	1,190.6	1,190.6	0.080	95.0	1,776,732.4
2050	-	-	-	3,533.4	40,634.6	-	1,346.9	1,346.9	0.075	100.6	1,776,833.0
Total	-	4,412,335.2	$(1,093,704.0)$	1,053,069.4	12,657,149.8	3,318,631.2	(1,053,672.1)	2,264,959.1	14.4	1,776,833.0	65,052,375.3


Base Case
High Case


If outage duration as a result of unplanned tube failure(s) increases to 76 hours and all other base assumptions remain the same, the NPV of the project is $\$ 2.28 \mathrm{M}$ (
High Case:
Low Case

[^1][^2]Moderate Case:
Moderate Case:
If likelihood of tube failure(s) is reduced to $50 \%$ and all other base assumptions remain the same, the NPV of the project is $\$ 539 \mathrm{~K}$.
If outage duration as a result of unplanned tube failure(s) reduces to 24 hours and all other base assumptions remain the same, the NPV of the project is $\$ 980 \mathrm{~K}$.

[^3]
## CI Number: 39903

Title: LIN 2011 Mill Refurbishment

Start Date:	$2011 / 01$
Final Cost Date:	$2011 / 11$
Function:	Generation
Forecast Amount:	$\$ 760,079$

## DESCRIPTION:

The purpose of this project is to replace mill components that have reached the end of their useful life. Based on experienced wear characteristics, there is risk that component failures will occur if a replacement plan is not followed. This capital item proposes the replacement of welded steel rollers and tables with ceramic wear components, worm gear \& shaft, vertical shaft and other non-repairable mill components. The scope of this project is to refurbish four mills with new ceramic tables and rollers as well as miscellaneous wear items as required. The four mills that will be refurbished under this project are 1D, 3B, 4A and 4D.

Summary of Related CI's +/- 2 years
2009-30916 Lin Mill Component Replacement \$757,624
2010-34702 Lin Mill Components Replacement \$760,585

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

A failed mill could limit peak generation of a unit depending on the fuel blend in service. This makes it imperative that the mills are available and able to operate for extended lengths between scheduled outages. The replacement of components and the upgrading of the ceramics help to achieve this initiative.

## Why do this project now?

An evaluation of the mills has identified several areas that need to be addressed in order for the mills to meet availability targets. Replacement parts are now needed due to age and wear on many of the mill components. Refurbishment is no longer sustainable and some of the components are worn beyond Original Equipment Manufacturer tolerances.

## Why do this project this way?

A phased approach to upgrading the mills allows for scheduled outages of selected mills, reducing the risk of extended unplanned outages. An unplanned outage could require in excess of 16 weeks based on material lead time and labor.


## CI 39903 - LIN Mill Refurbishment

The following is a breakdown of costs associated with the LIN Mill Refurbishment
Administrative Overheads and Interest
Labour
Materials
Contracts
Total


The materials estimate of \$ is based on the attached vendor quotations and detailed project estimate.

The labour estimate is mostly NSPI labour per the attached account breakdown. The estimate is based on the hourly rates per the collective agreement and the hours required to complete the refurbishment. The number of hours required is based on projects of similar scope which were completed in the recent past (reference related CI information in the project description).

CI Number: 39903
Project: LIN - Mill Component Replacements -2011

Project
Description:
Replace mill components which have reached the end of their useful life with Ceramic wear components and other components based on condition.


Pricing based on latest estimates from suppliers - attached
All Mills get Ceramic Upgrade (Grind Rolls and Bull Ring)

Pages 364-380 have been removed due to confidentiality.

## Refurbish Mills <br> Summary of Alternatives



## Recommendation :

## Refurbish Mills

## Notes/Comments :

## Refurbish Mills

Justifcation of this project is based on a capital cost of $\$ 760,079$ and in increasing probability of failure over the reamining life of the assets if refurbishment is not completed in 2011. The estimated capacity loss in the event of a failure is 10 MW for 336 hours. The total avoided costs for 2011 and 2012 in the event of a failure are $\$ 238,736$ and $\$ 425,124$ respectively.

## Test 2

## Test 3

## Test 4

Refurbish Mills

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	238,736	$(760,079)$	30,403	729,676	$(521,343)$	$(68,078)$	$(589,420)$	1.000	$(589,420)$	$(589,420)$
2012	-	425,124	-	58,374	671,302	425,124	$(113,808)$	311,316	0.937	291,822	$(297,598)$
2013	-	444,136	-	53,704	617,598	444,136	$(121,034)$	323,102	0.879	283,906	$(13,692)$
2014	-	457,828	-	49,408	568,190	457,828	$(126,708)$	331,120	0.824	272,732	259,040
2015	-	471,877	-	45,455	522,735	471,877	$(132,191)$	339,686	0.772	262,268	521,308
2016	-	501,082	-	41,819	480,916	501,082	$(142,372)$	358,711	0.724	259,615	780,922
2017	-	516,257	-	38,473	442,443	516,257	$(148,113)$	368,144	0.678	249,758	1,030,681
2018	-	531,827	-	35,395	407,047	531,827	$(153,894)$	377,933	0.636	240,344	1,271,025
2019	-	547,800	-	32,564	374,483	547,800	$(159,723)$	388,077	0.596	231,342	1,502,367
2020	-	564,189	-	29,959	344,525	564,189	$(165,611)$	398,577	0.559	222,723	1,725,090
2021	-	581,002	-	27,562	316,963	581,002	$(171,566)$	409,436	0.524	214,465	1,939,555
2022	-	598,251	-	25,357	291,606	598,251	$(177,597)$	420,654	0.491	206,544	2,146,098
2023	-	615,947	-	23,328	268,277	615,947	$(183,712)$	432,235	0.460	198,941	2,345,039
2024	-	634,101	-	21,462	246,815	634,101	$(189,918)$	444,183	0.431	191,638	2,536,678
2025	-	-	-	19,745	227,070	-	6,121	6,121	0.404	2,475	2,539,153
2026	-	-	-	18,166	208,904	-	5,631	5,631	0.379	2,135	2,541,288
2027	-	-	-	16,712	192,192	-	5,181	5,181	0.355	1,841	2,543,129
2028	-	-	-	15,375	176,817	-	4,766	4,766	0.333	1,588	2,544,717
2029	-	-	-	14,145	162,671	-	4,385	4,385	0.312	1,369	2,546,086
2030	-	-	-	13,014	149,658	-	4,034	4,034	0.293	1,181	2,547,267
2031	-	-	-	11,973	137,685	-	3,712	3,712	0.274	1,018	2,548,285
2032	-	-	-	11,015	126,670	-	3,415	3,415	0.257	878	2,549,163
2033	-	-	-	10,134	116,537	-	3,141	3,141	0.241	757	2,549,921
2034	-	-	-	9,323	107,214	-	2,890	2,890	0.226	653	2,550,574
2035	-	-	-	8,577	98,637	-	2,659	2,659	0.212	563	2,551,137
2036	-	-	-	7,891	90,746	-	2,446	2,446	0.199	486	2,551,623
2037	-	-	-	7,260	83,486	-	2,250	2,250	0.186	419	2,552,042
2038	-	-	-	6,679	76,807	-	2,070	2,070	0.174	361	2,552,403
2039	-	-	-	6,145	70,663	-	1,905	1,905	0.164	312	2,552,715
2040	-	-	-	5,653	65,010	-	1,752	1,752	0.153	269	2,552,983
2041	-	-	-	5,201	59,809	-	1,612	1,612	0.144	232	2,553,215
2042	-	-	-	4,785	55,024	-	1,483	1,483	0.135	200	2,553,415
2043	-	-	-	4,402	50,622	-	1,365	1,365	0.126	172	2,553,587
2044	-	-	-	4,050	46,572	-	1,255	1,255	0.118	149	2,553,736
2045	-	-	-	3,726	42,847	-	1,155	1,155	0.111	128	2,553,864
2046	-	-	-	3,428	39,419	-	1,063	1,063	0.104	111	2,553,974
2047	-	-	-	3,154	36,265	-	978	978	0.098	95	2,554,070
2048	-	-	-	2,901	33,364	-	899	899	0.091	82	2,554,152
2049	-	-	-	2,669	30,695	-	827	827	0.086	71	2,554,223
2050	-	-	-	2,456	28,239	-	936	936	0.080	75	2,554,298
Total	,	7,128,158	$(760,079)$	731,840	8,796,195	6,368,079	$(1,986,392)$	4,381,687	14.768	2,554,298	81,468,110



## CI Number: 40422

Title: LIN3 Boiler Refurbishment

Start Date:	$2011 / 03$
Final Cost Date:	$2011 / 10$
Function:	Generation
Forecast Amount:	$\$ 757,323$

## DESCRIPTION:

This project is for the boiler refurbishment necessary to maintain the reliable operation of the Lingan Unit \#3 boiler. This project will focus on inspection, repair / replacement of tubes, tube bends and shields primarily in sections SH-5, Reheater, LTSH-I and the High Temperature Platen. The scope will be determined as part of inspection, evaluation and prioritization activities undertaken during the outage. The quantity of tubes, tube bends and shields to be replaced will be confirmed during the Unit 3 outage in 2011. Tubes and tube bends will be replaced in the areas where the thickness readings are below American Society of Mechanical Engineers (ASME) specifications. Missing and degraded shielding will be replaced to further protect the tubes from ash erosion). The project scope is based on an expected minimum two week contractor mobilization necessary to refurbish the boiler.

Summary of Related CI's +/- 2 years:
2009 - CI 30682 LIN3 Division Wall Program \$202,953
2009 - CI 36282 LIN3 U\&U LTSH-1 Bend Replacements \$557,798

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

The project is required to maintain the long term reliability of the boiler and mitigate the risk of unplanned outages due to SH-5, Reheater, LTSH-I and High Temperature Platen tube leaks.

## Why do this project now?

A number of the boiler sections to be inspected and replaced are difficult to access. Sufficient time during a planned outage is required to complete repairs or replacements. Boiler tubes may be susceptible to inservice failure in the near future based on remaining metal thickness. A planned outage is necessary to undertake inspection of the boiler tubes to confirm the sections to be repaired and replaced. The planned outage for Unit 3 in 2011 will be of sufficient duration to complete inspection and repair or replacement of the boiler tubes, tube bends and shields.

## Why do this project this way?

The work will be completed in the most cost effective manner to maintain the reliability of the boiler. By replacing the tubes, tube bends and shields, the risk of tube leaks and unplanned outages to the Unit 3 boiler will be reduced.


## LIN3 Boiler Refurbish

## Summary of Alternatives

Budget Year :	2011	Date :	21-Dec-10
Division :	Generation Services	CI Number:	40422
Department:	Lingan Generating Station	Project No. :	
Originator:			


	Alternative	After Tax   WACC	PV of EVA / NPV	Rank	
A	Refurbish LIN3 Boiler	$6.68 \%$	$1,293,751$	1	
B	Test 2	$6.68 \%$	0	2	
C	Test 3	$6.68 \%$	0	2	Disc Pay
D	Test 4	$6.68 \%$	0	2	$72.78 \%$

## Recommendation :

$\square$
Refurbish LIN3 Boiler

## Notes/Comments :

Refurbish LIN3 Boiler
Justificaiton of this project is based on a capital cost of $\$ 757,323$ and an increasing probability of failure over the remaining life of the asset if refurbishment is not completed in 2011. In the event of a failure, the capacity loss would be 154MW for approximately 54 hours. Avoided replacement energy costs for 2011 and 2012 are $\$ 293,794$ and $\$ 468,464$ respectively.

## Test 2

## Test 3

## Test 4

LIN3 Boiler Refurbish

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	293,794.5	(757,323.0)	30,292.9	727,030.1	$(463,528.5)$	$(86,006.1)$	(549,534.5)	1.000	(549,534.5)	(549,534.5)
2012	-	468,464.6	-	58,162.4	668,867.7	468,464.6	$(127,309.1)$	341,155.6	0.937	319,793.4	(229,741.2)
2013	-	634,006.6	-	53,509.4	615,358.3	634,006.6	$(179,954.1)$	454,052.5	0.879	398,969.8	169,228.6
2014	-	849,135.1	-	49,228.7	566,129.6	849,135.1	$(248,068.7)$	601,066.5	0.824	495,077.8	664,306.5
2015	-	1,034,340.6	-	45,290.4	520,839.2	1,034,340.6	$(306,605.6)$	727,735.0	0.772	561,877.0	1,226,183.5
2016	-	-	-	41,667.1	479,172.1	-	12,916.8	12,916.8	0.724	9,348.5	1,235,532.0
2017	-	-	-	38,333.8	440,838.3	-	11,883.5	11,883.5	0.678	8,062.0	1,243,594.0
2018	-	-	-	35,267.1	405,571.3	-	10,932.8	10,932.8	0.636	6,952.6	1,250,546.6
2019	-	-	-	32,445.7	373,125.6	-	10,058.2	10,058.2	0.596	5,995.9	1,256,542.5
2020	-	-	-	29,850.0	343,275.5	-	9,253.5	9,253.5	0.559	5,170.8	1,261,713.4
2021	-	-	-	27,462.0	315,813.5	-	8,513.2	8,513.2	0.524	4,459.3	1,266,172.6
2022	-	-	-	25,265.1	290,548.4	-	7,832.2	7,832.2	0.491	3,845.6	1,270,018.3
2023	-	-	-	23,243.9	267,304.5	-	7,205.6	7,205.6	0.460	3,316.5	1,273,334.7
2024	-	-	-	21,384.4	245,920.2	-	6,629.2	6,629.2	0.431	2,860.1	1,276,194.8
2025	-	-	-	19,673.6	226,246.5	-	6,098.8	6,098.8	0.404	2,466.5	1,278,661.3
2026	-	-	-	18,099.7	208,146.8	-	5,610.9	5,610.9	0.379	2,127.1	1,280,788.5
2027	-	-	-	16,651.7	191,495.1	-	5,162.0	5,162.0	0.355	1,834.4	1,282,622.8
2028	-	-	-	15,319.6	176,175.5	-	4,749.1	4,749.1	0.333	1,582.0	1,284,204.8
2029	-	-	-	14,094.0	162,081.4	-	4,369.2	4,369.2	0.312	1,364.3	1,285,569.1
2030	-	-	-	12,966.5	149,114.9	-	4,019.6	4,019.6	0.293	1,176.5	1,286,745.6
2031	-	-	-	11,929.2	137,185.7	-	3,698.1	3,698.1	0.274	1,014.6	1,287,760.3
2032	-	-	-	10,974.9	126,210.9	-	3,402.2	3,402.2	0.257	875.0	1,288,635.3
2033	-	-	-	10,096.9	116,114.0	-	3,130.0	3,130.0	0.241	754.6	1,289,389.9
2034	-	-	-	9,289.1	106,824.9	-	2,879.6	2,879.6	0.226	650.8	1,290,040.7
2035	-	-	-	8,546.0	98,278.9	-	2,649.3	2,649.3	0.212	561.2	1,290,601.9
2036	-	-	-	7,862.3	90,416.6	-	2,437.3	2,437.3	0.199	484.0	1,291,085.9
2037	-	.	-	7,233.3	83,183.3	-	2,242.3	2,242.3	0.186	417.4	1,291,503.3
2038	-	-	.	6,654.7	76,528.6	-	2,062.9	2,062.9	0.174	360.0	1,291,863.2
2039	-	-	-	6,122.3	70,406.3	-	1,897.9	1,897.9	0.164	310.4	1,292,173.7
2040	-	-	-	5,632.5	64,773.8	-	1,746.1	1,746.1	0.153	267.7	1,292,441.4
2041	-	-	-	5,181.9	59,591.9	-	1,606.4	1,606.4	0.144	230.9	1,292,672.2
2042	-	-	-	4,767.4	54,824.5	-	1,477.9	1,477.9	0.135	199.1	1,292,871.3
2043	-	-	-	4,386.0	50,438.6	-	1,359.6	1,359.6	0.126	171.7	1,293,043.0
2044	-	-	-	4,035.1	46,403.5	-	1,250.9	1,250.9	0.118	148.1	1,293,191.1
2045	-	-	-	3,712.3	42,691.2	-	1,150.8	1,150.8	0.111	127.7	1,293,318.8
2046	-	-	-	3,415.3	39,275.9	-	1,058.7	1,058.7	0.104	110.1	1,293,428.9
2047	-	-	-	3,142.1	36,133.8	-	974.0	974.0	0.098	95.0	1,293,523.9
2048	-	-	-	2,890.7	33,243.1	-	896.1	896.1	0.091	81.9	1,293,605.8
2049	-	-	-	2,659.5	30,583.7	-	824.4	824.4	0.086	70.6	1,293,676.4
2050	-	-	-	2,446.7	28,137.0	-	932.7	932.7	0.080	74.9	1,293,751.3
Total	-	3,279,741.6	(757,323.0)	729,186.0	8,764,300.6	2,522,418.6	(795,031.6)	1,727,386.9	14.8	1,293,751.3	46,151,262.4



## CI Number: 40423

Title: LIN4 Boiler Refurbishment

Start Date:	$2011 / 08$
Final Cost Date:	$2011 / 10$
Function:	Generation
Forecast Amount:	$\$ 752,389$

## DESCRIPTION:

This project is for the boiler refurbishment necessary to maintain the reliable operation of the boiler. This project will focus on inspection, repair / replacement of tubes, tube bends and shields primarily in sections SH-5, Reheater, LTSH-I and the High Temperature Platen. The scope will be determined as part of inspection, evaluation and prioritization activities undertaken during the outage. The quantity of tubes, tube bends and shields to be replaced will be confirmed during the Unit 4 outage in 2011. Tubes and tube bends will be replaced in the areas where the thickness readings are below American Society of Mechanical Engineers (ASME) specifications. Missing and degraded shielding will be replaced to further protect the tubes from fly ash erosion).

The project scope is based on an expected minimum two week contractor mobilization necessary to refurbish the boiler.

Summary of Related CI's +/- 2 years:
No other projects in 2009,2010,2011,2012 and 2013

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

The project is required to maintain the long term reliability of the boiler and mitigate the risk of unplanned outages due to SH-5, Reheater, LTSH-I and High Temperature Platen tube leaks.

## Why do this project now?

A number of the boiler sections to be inspected and replaced are difficult to access and sufficient time during a planned outage is required to complete repairs or replacements. A planned outage is necessary to undertake inspection of the boiler tubes to confirm the sections to be repaired and replaced. The planned outage for Unit 4 in 2011 will be of sufficient duration to complete inspection and repair or replacement of the boiler tubes, tube bends and shields.

## Why do this project this way?

The work will be completed in the most cost effective manner to maintain the reliability of the boiler. By replacing the tubes, tube bends and shields, the risk of tube leaks and unplanned outages to the Unit 4 boiler will be reduced.

Parent CI Number						Approved Date	
Cost Centre : 305			305-Lingan 3\&4 Prod.Unit			Budget Version	1 ACE Plan
Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
094		094 - Interest Capitalized			6,780	0	6,780
095		095-Thermal Regular Labour AO			7,610	0	7,610
095		095-Thermal \& Hydro Contracts			$\square$	0	
001	013	001 - THERMAL Regular Labour	013 - SGP - Boiler		31,694	0	31,694
012	013	012 - Materials	013 - SGP - Boiler			0	
013	013	013 - POWER PRODUCTION C	013-SGP - Boiler			0	
				Total Cost:	752,389	0	752,389

Original Cost:

LIN4 Boiler Refurbish
Summary of Alternatives

Budget Year :	2011	Date :	21-Dec-10
Division :	Generation Services	CI Number:	40423
Department :	Lingan Generating Station	Project No. :	
Originator :			


	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Refurbish LIN4 Boiler	6.68\%	1,287,397	1	73.47\%	3.6 years
B	Test 2	6.68\%	0	2	\#NUM!	0.0 years
C	Test 3	6.68\%	0	2	\#NUM!	0.0 years
D	Test 4	6.68\%	0	2	\#NUM!	0.0 years

## Recommendation :

$\square$
Refurbish LIN4 Boiler

## Notes/Comments :

Refurbish LIN4 Boiler
Justification of this project is based on a capital cost of $\$ 752,389$ and an increasing probability of failure over the life of the asset if refurbishment is not completed in 2011. In the event of a failure the capacity loss would be 154 MW for approximately 54 hours. Avoided replacement energy costs fo 2011 and 2012 are $\$ 293,794$ and $\$ 468,464$ respectively.

## Test 2

## Test 3

## Test 4

LIN4 Boiler Refurbish

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	293,794.5	(752,389.0)	30,095.6	722,293.4	$(458,594.5)$	(86,067.8)	(544,662.3)	1.000	(544,662.3)	(544,662.3)
2012	-	468,464.6	-	57,783.5	664,510.0	468,464.6	$(127,425.8)$	341,038.8	0.936	319,085.7	$(225,576.5)$
2013	-	634,006.6	-	53,160.8	611,349.2	634,006.6	$(180,062.2)$	453,944.4	0.875	397,383.5	171,806.9
2014	-	849,135.1	-	48,907.9	562,441.2	849,135.1	$(248,167.5)$	600,967.7	0.819	492,222.9	664,029.8
2015	-	1,034,340.6	-	44,995.3	517,445.9	1,034,340.6	$(306,697.1)$	727,643.6	0.766	557,613.0	1,221,642.8
2016	-	-	-	41,395.7	476,050.3	-	12,832.7	12,832.7	0.717	9,201.0	1,230,843.8
2017	-	-	-	38,084.0	437,966.2	-	11,806.0	11,806.0	0.671	7,920.0	1,238,763.8
2018	-	-	-	35,037.3	402,928.9	-	10,861.6	10,861.6	0.628	6,817.4	1,245,581.2
2019	-	-	-	32,234.3	370,694.6	-	9,992.6	9,992.6	0.587	5,868.2	1,251,449.4
2020	-	-	-	29,655.6	341,039.1	-	9,193.2	9,193.2	0.549	5,051.3	1,256,500.7
2021	-	-	-	27,283.1	313,755.9	-	8,457.8	8,457.8	0.514	4,348.0	1,260,848.7
2022	.	-	-	25,100.5	288,655.5	-	7,781.1	7,781.1	0.481	3,742.7	1,264,591.4
2023	-	-	-	23,092.4	265,563.0	-	7,158.7	7,158.7	0.450	3,221.6	1,267,813.0
2024	-	-	-	21,245.0	244,318.0	-	6,586.0	6,586.0	0.421	2,773.1	1,270,586.1
2025	-	-	-	19,545.4	224,772.5	-	6,059.1	6,059.1	0.394	2,387.0	1,272,973.2
2026	-	-	-	17,981.8	206,790.7	-	5,574.4	5,574.4	0.369	2,054.7	1,275,027.9
2027	-	-	-	16,543.3	190,247.5	-	5,128.4	5,128.4	0.345	1,768.6	1,276,796.5
2028	-	-	-	15,219.8	175,027.7	-	4,718.1	4,718.1	0.323	1,522.4	1,278,318.9
2029	-	-	-	14,002.2	161,025.5	-	4,340.7	4,340.7	0.302	1,310.5	1,279,629.4
2030	-	-	-	12,882.0	148,143.4	-	3,993.4	3,993.4	0.282	1,128.0	1,280,757.4
2031	-	$\bullet$	-	11,851.5	136,292.0	-	3,674.0	3,674.0	0.264	971.0	1,281,728.3
2032	-	-	-	10,903.4	125,388.6	-	3,380.0	3,380.0	0.247	835.8	1,282,564.1
2033	-	-	-	10,031.1	115,357.5	-	3,109.6	3,109.6	0.231	719.4	1,283,283.6
2034	-	-	-	9,228.6	106,128.9	-	2,860.9	2,860.9	0.216	619.3	1,283,902.8
2035	-	-	-	8,490.3	97,638.6	-	2,632.0	2,632.0	0.203	533.1	1,284,435.9
2036	-	-	-	7,811.1	89,827.5	-	2,421.4	2,421.4	0.189	458.8	1,284,894.7
2037	-	-	-	7,186.2	82,641.3	-	2,227.7	2,227.7	0.177	395.0	1,285,289.7
2038	-	-	-	6,611.3	76,030.0	-	2,049.5	2,049.5	0.166	340.0	1,285,629.7
2039	-	-	-	6,082.4	69,947.6	-	1,885.5	1,885.5	0.155	292.6	1,285,922.3
2040	-	-	-	5,595.8	64,351.8	-	1,734.7	1,734.7	0.145	251.9	1,286,174.2
2041	-	-	-	5,148.1	59,203.7	-	1,595.9	1,595.9	0.136	216.8	1,286,391.0
2042	-	-	.	4,736.3	54,467.4	-	1,468.3	1,468.3	0.127	186.6	1,286,577.7
2043	-	-	-	4,357.4	50,110.0	-	1,350.8	1,350.8	0.119	160.7	1,286,738.3
2044	-	-	-	4,008.8	46,101.2	-	1,242.7	1,242.7	0.111	138.3	1,286,876.6
2045	-	-	-	3,688.1	42,413.1	-	1,143.3	1,143.3	0.104	119.0	1,286,995.7
2046	-	-	-	3,393.0	39,020.0	-	1,051.8	1,051.8	0.097	102.5	1,287,098.1
2047	-	-	-	3,121.6	35,898.4	-	967.7	967.7	0.091	88.2	1,287,186.3
2048	-	-	-	2,871.9	33,026.6	-	890.3	890.3	0.085	75.9	1,287,262.2
2049	-	-	-	2,642.1	30,384.4	-	819.1	819.1	0.080	65.4	1,287,327.6
2050	.	.	-	2,430.8	27,953.7	-	926.6	926.6	0.075	69.2	1,287,396.8
Total	-	3,279,741.6	(752,389.0)	724,435.3	8,707,200.7	2,527,352.6	(796,504.7)	1,730,847.9	14.4	1,287,396.8	45,951,397.7



## CI Number: 28289

Title: POT - Turbine Electro Hydraulic Governor Replacement

Start Date:	$2011 / 01$
Final Cost Date:	$2012 / 04$
Function:	Generation
Forecast Amount:	$\$ 725,435$

## DESCRIPTION:

The Electro-Hydraulic Governor (EHG) is a dedicated computer designed to instantaneously process operating data and control the operation of the steam turbine. The data collected and processed by the EHG is transferred to the operator interface, turbine control systems and turbine protection system.
The existing EHG was installed in 1987 as part of the coal conversion of Unit \#2. The control of the EHG is critical and includes various operating set points for the turbine that ensure safe, efficient and reliable operation of the turbine.

Summary of Related CI's +/- 2 years
2011-39529 POT - Steam Turbine/Generator Overhaul 2011 \$3,749,830
2011-38108 POT - AVR Refurbishment \$128,270

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Equipment Replacement

## Why do this project?

This project must be completed to ensure the steam turbine and generator are adequately controlled with a reliable EHG that can react to abnormal operating conditions and mitigate the risk of potential failure of this critical equipment.

## Why do this project now?

The EHG has reached the end of its useful life. Spare parts are no longer available and the EHG is no longer supported by the Original Equipment Manufacturer (OEM). The project must be completed now to ensure reliable operation of the turbine / generator is maintained and the risk of sudden failure is mitigated. The major outage scheduled for 2011 provides an adequate outage window to complete this project.

Why do this project this way?
The EHG can no longer be repaired. Replacement is the only option.

CI Number : 28289

Parent Cl Number	$:$
Cost Centre	$: 351$

## Approved Date

Budget Version
2011 ACE Plan

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		15,155	0	15,155
095		095-Thermal \& Hydro Contracts AO			0	
095		095-Thermal Regular Labour AO		33,902	0	33,902
095		095-Thermal Overtime Labour AO		1,801	0	1,801
095		095-Thermal Term Labour AO		3,602	0	3,602
001	011	001 - THERMAL Regular Labour	011 - SGP - Plant Control and Inst	119,200	0	119,200
002	011	002 - THERMAL Overtime Labour	011 - SGP - Plant Control and Inst	15,000	0	15,000
004	011	004 - THERMAL Term Labour	011 - SGP - Plant Control and Inst	15,000	0	15,000
012	011	012 - Materials	011 - SGP - Plant Control and Inst		0	
013	011	013 - POWER PRODUCTION Contracts	011 - SGP - Plant Control and Inst		0	
001	085	001- THERMAL Regular Labour	085 Design	11,000	0	11,000
011	085	011 - Travel Expense	085 Design	1,400	0	1,400
041	085	041 - Meals \& Entertainment	085 Design	1,400	0	1,400
001	087	001- THERMAL Regular Labour	087 Field Super.\& Ops.	11,000	0	11,000
			Total Cost:	725,435	0	725,435

Original Cost:

## CI 28289 - POT Turbine Electro Hydraulic Governor Replacement

The following is a breakdown of costs associated with the Turbine Electro Hydraulic Governor Replacement

Administrative Overheads and Interest
Labour
Materials
Contracts
Other
Total


The materials estimate of \$ is based on the attached vendor quotation. It includes $\$$ for the supply of the actuator and \$ of capital spare parts.

The contracts estimate of $\$$ is based on the attached vendor quotation. It includes for the base governor control system, \$ for automatic run-up integration, for factory training, and \$ for OEM technical support during installation and commissioning. The estimated cost for OEM technical support is based on the rates provided in the attached quotation. A contingency of $10 \% \square$ is also included in the contracts estimate.

The labour estimate of $\$ 171,200$ is based on mostly NSPI regular labour per the attached account breakdown. The estimate is based on the hourly rates per the collective agreement and the hours required to complete the project. The number of hours required is based on NSPI engineering staff experience.

Pages 397-404 have been removed due to confidentiality.

## Electro Hydraulic Governor replacement Summary of Alternatives

Budget Year :	2011
Division :	Power Production
Department :	Point Tupper Generating Station
Originator :	

Date :
CI Number:
Project No. :

21-Dec-10
28289


	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Replace Electro Hydraulic Governor (EHG)	6.68\%	8,359,072	1	118.70\%	3.0 years
B	Test 2	6.68\%	0	2	\#NUM!	0.0 years
C	Test 3	6.68\%	0	2	\#NUM!	0.0 years
D	Test 4	6.68\%	0	2	\#NUM!	0.0 years

## Recommendation :

Replace the Electro Hydraulic Governor

## Notes/Comments :

## Replace EHG

Justification of this project is based on a capital cost of $\$ 725,435$ and an increasing risk of failure over the life of the asset if replacement is not completed in 2011. Capacity loss is estimated at 150 MW for four months in the event of an unplanned failure. Total avoided costs for 2011 and 2012 are $\$ 507,883$ and $\$ 560,154$ respectively.

## Test 2

## Test 3

## Test 4

Electro Hydraulic Governor replacement

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	507,883	(725,435)	29,017	696,418	$(217,552)$	$(155,984)$	$(373,536)$	1.000	$(373,536)$	$(373,536)$
2012	-	560,154	-	55,713	640,704	560,154	$(156,487)$	403,667	0.937	378,391	4,855
2013	-	624,145		51,256	589,448	624,145	$(177,595)$	446,549	0.879	392,377	397,232
2014	-	690,633	-	47,156	542,292	690,633	$(199,572)$	491,062	0.824	404,471	801,702
2015	-	759,702	-	43,383	498,909	759,702	$(222,059)$	537,643	0.772	415,109	1,216,811
2016	-	905,922	-	39,913	458,996	905,922	$(268,463)$	637,459	0.724	461,357	1,678,169
2017	-	983,253	-	36,720	422,276	983,253	$(293,425)$	689,828	0.678	467,996	2,146,165
2018	-	1,063,520	-	33,782	388,494	1,063,520	$(319,219)$	744,301	0.636	473,334	2,619,499
2019	-	1,146,822	-	31,080	357,415	1,146,822	$(345,880)$	800,942	0.596	477,460	3,096,959
2020	-	1,233,257		28,593	328,821	1,233,257	$(373,446)$	859,811	0.559	480,459	3,577,417
2021	-	1,322,928	-	26,306	302,516	1,322,928	$(401,953)$	920,975	0.524	482,412	4,059,829
2022	-	1,415,943	-	24,201	278,315	1,415,943	$(431,440)$	984,503	0.491	483,397	4,543,226
2023	-	1,512,412	-	22,265	256,049	1,512,412	$(461,945)$	1,050,466	0.460	483,488	5,026,715
2024	-	1,612,447	-	20,484	235,565	1,612,447	$(493,509)$	1,118,938	0.431	482,755	5,509,470
2025	-	1,716,167	-	18,845	216,720	1,716,167	$(526,170)$	1,189,997	0.404	481,264	5,990,735
2026	-	1,823,692	-	17,338	199,383	1,823,692	$(559,970)$	1,263,722	0.379	479,078	6,469,813
2027	-	1,935,148	-	15,951	183,432	1,935,148	$(594,951)$	1,340,197	0.355	476,256	6,946,069
2028	-	2,050,665	-	14,675	168,757	2,050,665	$(631,157)$	1,419,508	0.333	472,854	7,418,922
2029	-	2,170,376	-	13,501	155,257	2,170,376	$(668,631)$	1,501,745	0.312	468,923	7,887,846
2030	-	2,294,420	-	12,421	142,836	2,294,420	$(707,420)$	1,587,000	0.293	464,515	8,352,361
2031	-	-	-	11,427	131,409	-	3,542	3,542	0.274	972	8,353,333
2032	.	.	.	10,513	120,897	.	3,259	3,259	0.257	838	8,354,171
2033	-	-	-	9,672	111,225	-	2,998	2,998	0.241	723	8,354,894
2034	-	-	-	8,898	102,327	-	2,758	2,758	0.226	623	8,355,517
2035	-	-	-	8,186	94,141	-	2,538	2,538	0.212	538	8,356,055
2036	-	-	-	7,531	86,609		2,335	2,335	0.199	464	8,356,518
2037	-	-	-	6,929	79,681	-	2,148	2,148	0.186	400	8,356,918
2038	-	-	-	6,374	73,306	-	1,976	1,976	0.174	345	8,357,263
2039	-	-	-	5,865	67,442	-	1,818	1,818	0.164	297	8,357,560
2040	-	-	-	5,395	62,046	-	1,673	1,673	0.153	256	8,357,817
2041	-	-	-	4,964	57,083	-	1,539	1,539	0.144	221	8,358,038
2042	-	-	-	4,567	52,516	-	1,416	1,416	0.135	191	8,358,229
2043	-	-	.	4,201	48,315		1,302	1,302	0.126	164	8,358,393
2044	-	-	-	3,865	44,450		1,198	1,198	0.118	142	8,358,535
2045	-	-	-	3,556	40,894	-	1,102	1,102	0.111	122	8,358,657
2046	-	-	-	3,271	37,622	-	1,014	1,014	0.104	105	8,358,763
2047	-	-	-	3,010	34,612	-	933	933	0.098	91	8,358,854
2048	-	-	-	2,769	31,843	-	858	858	0.091	78	8,358,932
2049	-	-	-	2,547	29,296	-	790	790	0.086	68	8,359,000
2050	-	-	-	2,344	26,952	-	893	893	0.080	72	8,359,072
Total	-	26,329,488	(725,435)	698,483	8,395,269	25,604,053	(7,953,185)	17,650,869	14.8	8,359,072	244,516,776



Page 407 of 2359

## CI Number: 39933

Title: TRE - Siding Replacement
Start Date: 2011/04
Final Cost Date: 2011/11
Function: Generation
Forecast Amount: \$603,707

## DESCRIPTION:

The exterior siding on the building housing the boilers and turbines for Units 1 through 5 at the Trenton Generating Station ranges in age from 40 to 60 years. The siding needs to be replaced due to normal agerelated deterioration.

The scope of this project includes replacement of siding in the following areas:

1) North wall of Units 1-4 coal conveyor gallery.
2) Sloped roof of Units 1-4 coal conveyor gallery.
3) South wall of Units 1-4 boiler house.
4) North wall of Unit 5 turbine house.
5) Unit 5 Cooling Water Pump house.
6) Replacement of louvers in \#5 turbine house north wall and \#5 boiler house north \& south walls.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Buildings

## Why do this project?

Replacing the siding will address deterioration issues with the existing siding that has resulted in leakage of water into the building structure. An added benefit of completing this project will be the replacement of the existing asbestos-containing siding.

## Why do this project now?

Replacing the siding now and addressing issues with water leakage into the building structure will mitigate the risk of more extensive water damage and costly repairs. Completing the majority of this project in 2011, during a time when the Unit shutdown requirements for both operating units are minor, will allow the siding replacement to proceed without significant interference with other projects.

## Why do this project this way?

Due to the age and condition of the existing siding, replacement is the most practical option. The replacement will be completed in the most economically feasible manner, which includes replacing the existing siding with sheet metal siding and completing wall sections in their entirety.


## CI Number: 39780

Title: TUC - Unit 1 Cooling Water Intake Structural Refurbishment (Phase II)
Start Date: 2011/06
Final Cost Date: 2011/12

Function:
Forecast Amount: \$562,163

## DESCRIPTION:

This project includes the structural refurbishment of the Unit\#1 Cooling Water (CW) Intake Structure to ensure the structural integrity of the structure is restored. The existing concrete infrastructure supports two local control stations, two travelling screens (North and South), one lighting pole, two CW pumps (North and South), and two discharge valves (North and South). In order to facilitate the replacement of the concrete infrastructure, the existing local control stations, lighting pole, travelling screens, CW pumps, and the discharge valves (including their respective power and control cables) must be removed. Once the new concrete slabs are installed, the existing CW pumps, travelling screens, lighting pole and new local control stations will be re-installed in the same locations complete with their respective new cables, cable tray and support system.

The work associated with this project includes the following:

- Installation of temporary stop logs and dewatering the CW intake.
- Disconnecting and removing the existing electrical equipment; including local control stations, CW pumps, travelling screens and lighting pole.
- Demolition and disposal of concrete, structural steel cover plates, steel beams and ladders.
- Installation of scaffolding to access the work area.
- Civil / structural work for the new suspended concrete slab (including all formwork and placing and finishing of concrete).
- Fabrication and installation of new galvanized reinforcing steel beams and cover plates.
- Fabrication and installation of new stainless steel ladders.
- Re-installation of the existing CW pumps, discharge valves, travelling screens, lighting pole.
- Installation of new local control stations with new cable tray, cable and support system.
- Removal of all staging and stop logs

Summary of Related CI's +/- 2 years:
2010 - 28747 TUC - Unit \#1 Cooling Water Intake Structures Refurbishment (Phase I) \$179,326

## JUSTIFICATION:

Justification Criteria: Health \& Safety

## Why do this project?

Recent inspection of the Unit \#1 cooling water intake structure indicated that concrete slabs, concrete beams, and structural steel components have reached a deteriorated state and must be replaced. Replacement of these components is required to restore the structural integrity of the intake structure.

## Why do this project now?

The intake structure components are over 40 years old and must be replaced now to restore the structural integrity of the cooling water intake structure.

## Why do this project this way?

The recent engineering study indicates that repairs are no longer an option due to the existing condition of the concrete slab and steel components. Replacement is the only option.

## Approved Date

Cost Centre : 311

- 311-Tufts Cove Admin./Common Capita

Budget Version
2011 ACE Plan

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		15,912	0	15,912
095		095-Thermal \& Hydro Contracts AO			0	
095		095-Thermal Regular Labour AO		2,401	0	2,401
001	014	001 - THERMAL Regular Labour	014-SGP - Circ.Water Sys.	10,000	0	10,000
013	014	013 - POWER PRODUCTION Contracts	014-SGP - Circ.Water Sys.		0	
028	014	028-Consulting	014 - SGP - Circ.Water Sys.		0	
			Total Cost: Original Cost:	562,163	0	562,163

## CI 39780 - TUC Unit 1 Cooling Water Intake Structural Refurbishment

The following is a breakdown of costs associated with the Unit 1 Cooling Water Intake Structural Refurbishment:

Administrative Overheads and Interest Labour Contracts Consulting Total


The contracts estimate of $\quad$ is based on the detailed estimates attached.

Pages 414-444 have been removed due to confidentiality.

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40344

Title: POT - Waterwall Panel Replacement 2011
Start Date: 2011/03
Final Cost Date: 2012/03
Function: Generation
Forecast Amount: \$517,626

## DESCRIPTION:

This project will include waterwall panel replacement for Point Tupper Unit \#2 and is based on tube survey in the furnace.

Timely replacement of waterwall panels avoids unplanned repair and replacement energy costs. The replacement of waterwall panels is an integral component of the boiler tube failure reduction program. It serves to maintain target heat rates and support reliable boiler operations.

Summary of Related CI's +/- 2 years
2009 - CI 32582 POT - Front Waterwall Panel Replacement \$386,291

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Equipment Replacement

## Why do this project?

The replacement scope for 2011 was determined through the analysis of extensive tube wall surveys. Replacing tubes that have experienced wastage from erosion/corrosion will ensure reliable operation is maintained.

## Why do this project now?

Timely replacement of selected waterwall panels is required to maintain target heat rates and mitigate the risk of unplanned Unit outages due to waterwall tube leaks.

Why do this project this way?
The waterwall panel replacement program is required to support reliable Unit performance.


## CI 40344 - POT Waterwall Panel Replacement

The following is a breakdown of costs associated with the Waterwall Panel Replacement


The estimate for this project is based on CI 32582 - POT Front Water Wall Panel Replacement, which was completed in 2010. This project is similar in scope to CI 32582. The actual expenditures for CI 32582 were as follows:

Administrative Overhead and Interest $\$ 35,900$
Labour
Materials
Contracts
Other
Total
\$21,857

\$488,113

Pages 448-450 have been removed due to confidentiality.


Recommendation :

Replace the waterwall panels

## Notes/Comments :

## Replace waterwall panels

Justification of this project is based on a capital cost of $\$ 517,626$ and an increasing risk of failure over the life of the asset if replacement is not completed in 2011. The estimated capacity loss is 150 MW for one week in the event of an un-planned failure. Total avoided costs for 2011 and 2012 are $\$ 482,569$ and $\$ 506,335$ respectively. Total avoided costs are based on total avoided replacement energy cost and total avoided labour/material costs.
$\square$

## Test 3

Test 4	

Waterwall replacement 2011

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	482,569	$(517,626)$	20,705	496,921	$(35,057)$	$(150,357)$	$(185,414)$	1.000	$(185,414)$	(185,414)
2012	-	506,335	-	39,754	457,167	506,335	$(144,719)$	361,616	0.937	338,973	153,558
2013	-	534,111	-	36,573	420,594	534,111	$(154,237)$	379,874	0.879	333,790	487,349
2014	-	563,245	-	33,648	386,946	563,245	$(164,242)$	399,003	0.824	328,645	815,994
2015	-	593,801	-	30,956	355,991	593,801	$(174,482)$	419,319	0.772	323,752	1,139,746
2016	-	659,456	-	28,479	327,511	659,456	$(195,603)$	463,853	0.724	335,711	1,475,457
2017	-	694,698	-	26,201	301,311	694,698	$(207,234)$	487,464	0.678	330,708	1,806,165
2018	-	731,652	-	24,105	277,206	731,652	$(219,340)$	512,313	0.636	325,802	2,131,967
2019	-	770,399	-	22,176	255,029	770,399	$(231,949)$	538,450	0.596	320,982	2,452,949
2020	-	811,022	-	20,402	234,627	811,022	$(245,092)$	565,930	0.559	316,239	2,769,189
2021	-	853,611	-	18,770	215,857	853,611	$(258,801)$	594,811	0.524	311,565	3,080,754
2022	-	898,259	.	17,269	198,588	898,259	$(273,107)$	625,152	0.491	306,953	3,387,707
2023	-	945,061	-	15,887	182,701	945,061	$(288,044)$	657,017	0.460	302,399	3,690,106
2024	-	994,120	-	14,616	168,085	994,120	$(303,646)$	690,474	0.431	297,899	3,988,005
2025	-	1,045,542	-	13,447	154,638	1,045,542	$(319,950)$	725,593	0.404	293,448	4,281,452
2026	-	1,099,438	-	12,371	142,267	1,099,438	$(336,991)$	762,447	0.379	289,045	4,570,497
2027	-	1,155,924	-	11,381	130,886	1,155,924	$(354,808)$	801,116	0.355	284,687	4,855,184
2028	-	1,215,121	-	10,471	120,415	1,215,121	$(373,442)$	841,680	0.333	280,373	5,135,556
2029	-	1,277,157	-	9,633	110,782	1,277,157	$(392,933)$	884,225	0.312	276,101	5,411,658
2030	-	1,342,166	-	8,863	101,919	1,342,166	$(413,324)$	928,842	0.293	271,872	5,683,530
2031	-	-	-	8,154	93,766	-	2,528	2,528	0.274	694	5,684,223
2032	-	.	-	7,501	86,264	-	2,325	2,325	0.257	598	5,684,821
2033	.	-	-	6,901	79,363	.	2,139	2,139	0.241	516	5,685,337
2034	-	-	-	6,349	73,014	-	1,968	1,968	0.226	445	5,685,782
2035	-	-	-	5,841	67,173		1,811	1,811	0.212	384	5,686,166
2036	-	-	-	5,374	61,799	-	1,666	1,666	0.199	331	5,686,496
2037	-	-	-	4,944	56,855	-	1,533	1,533	0.186	285	5,686,782
2038	-	-	-	4,548	52,307	-	1,410	1,410	0.174	246	5,687,028
2039	-	-	-	4,185	48,122	-	1,297	1,297	0.164	212	5,687,240
2040	-	-	-	3,850	44,273	-	1,193	1,193	0.153	183	5,687,423
2041	-	-	-	3,542	40,731	-	1,098	1,098	0.144	158	5,687,581
2042	-	.	-	3,258	37,472	-	1,010	1,010	0.135	136	5,687,717
2043	-	-	-	2,998	34,474	-	929	929	0.126	117	5,687,834
2044	-	-	-	2,758	31,717	-	855	855	0.118	101	5,687,935
2045	-	-	-	2,537	29,179	-	787	787	0.111	87	5,688,023
2046	-	-	-	2,334	26,845	-	724	724	0.104	75	5,688,098
2047	-	-	-	2,148	24,697	-	666	666	0.098	65	5,688,163
2048	-	-	-	1,976	22,721	-	612	612	0.091	56	5,688,219
2049	-	-	-	1,818	20,904	-	563	563	0.086	48	5,688,267
2050	-	-	-	1,672	19,231	-	637	637	0.080	51	5,688,318
Total	.	17,173,689	$(517,626)$	498,395	5,990,350	16,656,063	$(5,176,547)$	11,479,516	14.768	5,688,318	170,872,859



## CI Number: 40244

Title: LIN Boiler Feed Pump Rebuild
Start Date: 2011/01
Final Cost Date: 2011/12
Function: Generation
Forecast Amount: \$508,703

## DESCRIPTION:

This project includes the complete rebuild of one of the boiler feedwater pumps (BFP) for the Lingan Generating Station and refurbishment of a pump cartridge. This work will restore all BFP fits and dimensions to Original Equipment Manufacturer (OEM) specifications. In addition to rebuilding the pump cartridge, the pump refurbishment includes inspection, measurement and refurbishment or replacement (replacement only as required) of all other pump components; including the balancing piston assembly, pump casing and barrel, journal and thrust bearing assemblies, seals, internal valves, fasteners, tubing, lubrication systems, sensors, controls and cooling water components.

The Boiler Feed Pump design operating parameters are continuously monitored. On detection of variance from normal operating parameters or unexpected failure, a pump refurbishment is completed. To limit down-time, a previously rebuilt pump cartridge is used for the refurbishment. A cartridge rebuild typically requires between 16 and 20 weeks and a typical pump refurbishment takes four weeks with an available cartridge. The extracted cartridge is refurbished and made ready for future use.

There are eight boiler feed pumps at Lingan (2 per Unit). Not including this project, six of the eight pumps have already been rebuilt to OEM specifications. The last of the eight boiler feed pumps will be rebuilt in 2012. After 2012, annual rebuilds of the pump cartridges (and not the complete pump) will be required.

Summary of Related CI's +/- 2 years
2009 - 30917 LIN Boiler Feed Pump Rebuild \$454,421
2010-34690 LIN Boiler Feed Pump Rebuild \$509,535
2012 - CI TBD LIN Boiler Feed Pump Rebuild \$TBD

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

This project is required in order to restore one BFP to OEM operating condition and to ensure the availability and reliability of this pump. The Lingan Generating Station needs to be in a position to respond quickly to potential BFP problems to increase BFP availability. This will mitigate the risk of lost generating capacity or a forced unit outage and the associated replacement energy costs. As part of this BFP rebuild program, one fully restored cartridge assembly is maintained ready for use in the event of an unplanned failure or to support the refurbishment activity.

## Why do this project now?

When the existing back up pump is placed into service another pump will be available for refurbishment. This project is required to repair a BFP and restore the BFP back-up capacity for the units in order to ensure continued unit reliability.

## Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan

## Why do this project this way?

Refurbishment of pump cartridges and components is more cost effective than replacement of the cartridge or pump. After refurbishment of a pump is completed, the cartridge requires refurbishment approximately every five years.

- LIN Boiler Feed Pump Rebuild



## CI 40244 - LIN Boiler Feed Pump Rebuild

The following is a breakdown of costs associated with the LIN Boiler Feed Pump Rebuild


The contracts estimate of is based on the attached vendor quotations and detailed cost estimate.

The labour estimate is based on the hourly rates per the collective agreement and the hours required to complete the refurbishment. The number of hours required is based on projects of similar scope which were completed in the recent past.

The materials estimate includes consumables that will be used during the refurbishment. This estimate is based on projects of similar scope completed in the recent past.

Station: LINGAN GENERATING STATION
CI Number: 40244
Project: LIN BOILER FEED PUMP REBUILD

Project
Description:
Lingan generating station boiler feedwater pump rebuild
Scope
Scope is complete refurbishment of one the 8 BFP's. A major rebuild on Pump 3b plus rebuild on one other pump cartridge in 2011 is estimated. All teardown and rebuild work to remove the cartridge and install the back up cartridge is done by Lingan. The cartridge is evaluated and rebuilt to OEM condition by an outside

Item	Description	Rate (\$/hr)	Qty	Cost Est	Totals	
1	Regular Plant Labor					
	G/S Engineering			\$6,580		
	E\&MS Supervision			\$3,360		
	E\&MS Trades			\$61,440		
	Sub-Total Plant Resources				\$71,380	
2	Term Labor					
	Trades \$30		320	\$9,600		
	Sub-Total Term Resources				\$9,600	
3	Consulting		120			
	HP weld stress relieving processes, weld procedure development, etc. 2 events AR					
	ND inspection		120			
	Sub-Total Consulting					
4	Material					
	Replacement misc parts, fasteners, gaskets, etc. required to complete the rebuild		2			
	Sub-Total Materials					
5	Contracts					
	Cartridge dismantle, evaluation inspection / test / report, re-assembly		2			Note 2   Note 1
	Cartridge \#1 typical re build / re fit incl matls + 10\% Cont		1			
	Cartridge \# 2 refurb AR - Contigency		1			
	Transportation-2 events		2			
	Sub-Total Contracts					
6	A/O Charges					
	Interest Capitalized/Construction Overhead	\$22,813	1			
	AO - Therm and Hydro Contracts		1			
	AO- thermal Re labor AO- Thermal Term labor	$\begin{gathered} \$ 17,138 \\ \$ 2,305 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$			
	Sub-Total A/O Charges					
	Total Project Estimate				\$508,703	

Estimate Assumptions:
Refurb cost is typical tear down costs and repair plus
$10 \%$ contigency on repair costs

Pages 459-475 have been removed due to confidentiality.


Recommendation :
$\square$
Rebuild / Refurbish the Boiler Feed Pump
Notes/Comments :
Refurbish / Rebuild Boiler Feed Pump
Justification of this project is based on a captial cost of $\$ 508,702$ and an increasing probability of failure over the remaining life of the pump. The capacity loss in the event of a failure would be 154MW for 168 hours. Total avoided costs of failure for 2011 and 2012 are $\$ 195,932$ and $\$ 218,389$ respectively

## Replace Boiler Feed Pump

Assumptions include an estimated captial cost of $\$ 2,300,000$ to replace the existing pump and an increasing probability of failure over the life of the existing asset if replacement is not completed in 2011. The capacity loss in the event of a failure would be 154MW for 168 hours (assuming a replacement pump was purchased in advance of the un-planned failure and ready to be installed). Total avoided costs associated with a potential failure for 2011 and 2012 are $\$ 195,932$ and $\$ 218,389$ respectively.

## Test 3

Test 4	

LIN-Boiler Feedpump Replacement 2011

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	195,932	(508,702)	20,348	488,354	$(312,770)$	(57,312)	$(370,082)$	1.000	$(370,082)$	$(370,082)$
2012	-	218,390	-	39,068	449,286	218,390	$(55,667)$	162,722	0.937	152,533	$(217,548)$
2013	-	222,064	-	35,943	413,343	222,064	$(57,697)$	164,366	0.879	144,426	$(73,122)$
2014	-	225,804	-	33,067	380,275	225,804	$(59,814)$	165,990	0.824	136,720	63,598
2015	-	229,613	-	30,422	349,853	229,613	$(61,749)$	167,864	0.772	129,606	193,204
2016	-	-	-	27,988	321,865	-	8,676	8,676	0.724	6,279	199,484
2017	-	-	-	25,749	296,116	-	7,982	7,982	0.678	5,415	204,899
2018	-	-	-	23,689	272,427	-	7,344	7,344	0.636	4,670	209,569
2019	-	-	-	21,794	250,632	-	6,756	6,756	0.596	4,028	213,597
2020	-	-	-	20,051	230,582		6,216	6,216	0.559	3,473	217,070
2021	-	-	-	18,447	212,135	-	5,718	5,718	0.524	2,995	220,065
2022	-	-	-	16,971	195,164	-	5,261	5,261	0.491	2,583	222,649
2023	-	-	-	15,613	179,551	-	4,840	4,840	0.460	2,228	224,876
2024	-	-	-	14,364	165,187	-	4,453	4,453	0.431	1,921	226,797
2025	-	-	-	13,215	151,972	-	4,097	4,097	0.404	1,657	228,454
2026	-	-	-	12,158	139,814	-	3,769	3,769	0.379	1,429	229,883
2027	-	-	-	11,185	128,629	-	3,467	3,467	0.355	1,232	231,115
2028	-	-	-	10,290	118,339	-	3,190	3,190	0.333	1,063	232,178
2029	-	-	-	9,467	108,872	-	2,935	2,935	0.312	916	233,094
2030	-	-	-	8,710	100,162	-	2,700	2,700	0.293	790	233,884
2031	-	-	-	8,013	92,149	-	2,484	2,484	0.274	682	234,566
2032	-	-	-	7,372	84,777	-	2,285	2,285	0.257	588	235,154
2033	-	-	-	6,782	77,995	-	2,102	2,102	0.241	507	235,661
2034	-	-	-	6,240	71,755	-	1,934	1,934	0.226	437	236,098
2035	-	-	-	5,740	66,015	-	1,780	1,780	0.212	377	236,475
2036	-	-	-	5,281	60,734	-	1,637	1,637	0.199	325	236,800
2037	-	-	-	4,859	55,875	-	1,506	1,506	0.186	280	237,080
2038	-	-	-	4,470	51,405	-	1,386	1,386	0.174	242	237,322
2039	-	-	-	4,112	47,293	-	1,275	1,275	0.164	209	237,531
2040	-	-	-	3,783	43,509	-	1,173	1,173	0.153	180	237,710
2041	-	-	-	3,481	40,029	-	1,079	1,079	0.144	155	237,865
2042	-	-	-	3,202	36,826	-	993	993	0.135	134	237,999
2043	-	-	.	2,946	33,880	-	913	913	0.126	115	238,115
2044	-	-	-	2,710	31,170	-	840	840	0.118	99	238,214
2045	-	-	-	2,494	28,676	-	773	773	0.111	86	238,300
2046	-	$\cdot$	-	2,294	26,382	-	711	711	0.104	74	238,374
2047	-	-	-	2,111	24,271	-	654	654	0.098	64	238,438
2048	-	.	.	1,942	22,330	-	602	602	0.091	55	238,493
2049	-	-	-	1,786	20,543	-	554	554	0.086	47	238,540
2050	-	-	-	1,643	18,900	-	626	626	0.080	50	238,590
Total	-	1,091,803	(508,702)	489,802	5,887,075	583,101	$(189,527)$	393,573	14.768	238,590	7,670,989

LIN-Boiler Feedpump Replacement 2011

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	195,932	(2,300,000)	92,000	2,208,000	$(2,104,068)$	$(34,896)$	(2,138,963)	1	$(2,138,963)$	(2,138,963)
2012	-	218,390	-	176,640	2,031,360	218,390	$(13,293)$	205,097	1	192,254	$(1,946,709)$
2013	-	221,319	-	162,509	1,868,851	221,319	$(18,231)$	203,088	1	178,450	$(1,768,259)$
2014	-	224,288	-	149,508	1,719,343	224,288	$(23,478)$	200,810	1	165,400	$(1,602,859)$
2015	-	227,299	-	137,547	1,581,796	227,299	$(27,823)$	199,476	1	154,013	$(1,448,846)$
2016	-	230,351	$\cdot$	126,544	1,455,252	230,351	$(32,180)$	198,170	1	143,425	$(1,305,421)$
2017	-	233,445	-	116,420	1,338,832	233,445	$(36,278)$	197,167	1	133,763	$(1,171,658)$
2018	-	236,582	-	107,107	1,231,725	236,582	$(40,137)$	196,445	1	124,928	$(1,046,730)$
2019	-	239,763	-	98,538	1,133,187	239,763	$(43,780)$	195,983	1	116,830	$(929,900)$
2020	-	242,987	-	90,655	1,042,532	242,987	$(47,223)$	195,764	1	109,392	$(820,508)$
2021	.	246,257	-	83,403	959,130	246,257	$(50,485)$	195,772	1	102,546	$(717,961)$
2022	-	249,571	-	76,730	882,399	249,571	$(53,581)$	195,990	0	96,233	$(621,729)$
2023	-	-	-	70,592	811,807	-	21,884	21,884	0	10,072	$(611,657)$
2024	-	-	-	64,945	746,863		20,133	20,133	0	8,686	$(602,971)$
2025	-	-	-	59,749	687,114	-	18,522	18,522	0	7,491	$(595,480)$
2026	-	-	-	54,969	632,145	-	17,040	17,040	0	6,460	$(589,020)$
2027	-	-	-	50,572	581,573	-	15,677	15,677	0	5,571	$(583,449)$
2028	-	.	-	46,526	535,047		14,423	14,423	0	4,804	$(578,644)$
2029	-	-	-	42,804	492,243	-	13,269	13,269	0	4,143	$(574,501)$
2030	-	-	-	39,379	452,864	-	12,208	12,208	0	3,573	$(570,928)$
2031	-	-	-	36,229	416,635	-	11,231	11,231	0	3,081	$(567,846)$
2032	-	-	-	33,331	383,304	-	10,333	10,333	0	2,657	$(565,189)$
2033	-	-	-	30,664	352,640	-	9,506	9,506	0	2,292	$(562,897)$
2034	-	-	-	28,211	324,429	-	8,745	8,745	0	1,976	$(560,921)$
2035	-	-	-	25,954	298,474	-	8,046	8,046	0	1,704	$(559,216)$
2036	-	-	-	23,878	274,596	-	7,402	7,402	0	1,470	(557,746)
2037	-	-	-	21,968	252,629	-	6,810	6,810	0	1,268	$(556,479)$
2038	-	-	-	20,210	232,418	-	6,265	6,265	0	1,093	$(555,385)$
2039	-	-	-	18,593	213,825	-	5,764	5,764	0	943	$(554,443)$
2040	-	-	-	17,106	196,719	-	5,303	5,303	0	813	$(553,630)$
2041	-	-	-	15,738	180,981	-	4,879	4,879	0	701	$(552,929)$
2042	-	-	-	14,479	166,503	-	4,488	4,488	0	605	$(552,324)$
2043	-	-	-	13,320	153,183	-	4,129	4,129	0	521	(551,802)
2044	-	-	-	12,255	140,928	-	3,799	3,799	0	450	$(551,353)$
2045	-	-	-	11,274	129,654	-	3,495	3,495	0	388	$(550,965)$
2046	-	-	-	10,372	119,281	-	3,215	3,215	0	334	$(550,630)$
2047	-	-	-	9,543	109,739	-	2,958	2,958	0	288	$(550,342)$
2048	-	-	-	8,779	100,960	-	2,722	2,722	0	249	$(550,093)$
2049	-	-	-	8,077	92,883	-	2,504	2,504	0	215	$(549,879)$
2050	-	-	-	7,431	85,452	-	2,833	2,833	0	227	$(549,651)$
Total	-	2,766,182	$(2,300,000)$	2,214,548	26,617,297	466,182	$(173,802)$	292,381	15	$(549,651)$	(31,329,912)



## CI Number: 40246

Title: LIN Cooling Water Pump Refurbishment
Start Date: 2011/02
Final Cost Date: 2011/09
Function: Generation
Forecast Amount: \$452,421

## DESCRIPTION:

This project is for refurbishment of the 1A Cooling Water (CW) pump at the Lingan Generating Station.
This refurbishment includes re-surfacing and coating of worn, corroded and damaged surfaces and components, a new sleeveless, chromed stainless pump shaft, new marine bearings, and verification of all mating fits and alignments. The refurbishment project includes the installation of an additional bearing on the pump shaft. This bearing will help to maintain alignment and will reduce the movement of the pump shaft if misalignment occurs, protecting related bearings and running surfaces.

Summary of Related CI's +/- 2 years
2009-28914 LIN CW Pump Replacement \$574,640
2010-39623 LIN U\&U 3A Pump Refurbishment 381,736
2010-40127 LIN U\&U A Pump Refurbishment \$232,000

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

Each operating unit is equipped with two $50 \%$ duty CW pumps, which supply cooling water to each unit's condenser and to various smaller heat exchangers serving the unit. Adequate condenser cooling is necessary to ensure proper condenser vacuum, which is a major contributor to unit efficiency. During the cooler months, one CW pump per operating unit is capable of providing adequate condenser cooling. During warmer months, simultaneous operation of both pumps is required to maintain condenser vacuum. If one of a unit's two pumps is unavailable during the warmer months, the Unit's heat rate and/or ability to generate full load will be restricted. The loss of both pumps would lead to an unplanned outage. The availability of these pumps is critical to ensure reliable unit operation. The CW pumps range in age from 18 to 23 years. Over the years, these pumps have developed normal operating wear and component erosion and corrosion due to solid particle and salt water exposure which has been managed through periodic maintenance overhauls.

## Why do this project now?

The station's CW pumps are currently exhibiting wear profiles that indicate rebuilds must be completed as routine maintenance has extended the life but cannot address the age without this work. Completing this project now will mitigate the risk of unit de-rating or forced outages. This project will mitigate the risk of unit de-rating or forced outage due to the age and condition of CW pumps and long lead times on repairs and fabricated parts for these pumps.

## Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan

Why do this project this way?
Refurbishing large pumps with new component and design features is more cost effective than procuring a replacement pump.


## Original Cost

## CI 40246 - LIN Cooling Water Pump Refurbishment

The following is a breakdown of costs associated with the LIN Cooling Water Pump Refurbishment

Administrative Overheads and Interest Labour Materials Contracts
Total

The contracts estimate of 4 is based on the attached vendor quotation for the refurbishment of the 3A CW pump, completed under CI 39623 in 2010. The estimate for this project has increased $15 \%$ to allow for added scope for pump bearings.

The labour estimate is based on the hourly rates per the collective agreement and the hours required to complete the refurbishment. The number of hours required is based on projects of similar scope which were completed in the recent past.

Station: LINGAN GENERATING STATION

CI Number:

Project:

Project
Description:

40246

LIN-CW PUMP Rebuild
Extract, Rebuild and Install a CW pump to meet
NSPI - Lingan CW pump technical specification plus added bearing support.


Assumptions:

Note 1

Pages 485-494 have been removed due to confidentiality.

Refurbish BFP
Summary of Alternatives

Budget Year :   Division :   Department :	2011	Date :   CI Number:   Project No. :	21-Dec-10
	Generation Services		40246
	Lingan Generating Station		


	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Refurbish CW Pump	6.55\%	1,727,054	1	128.26\%	2.9 years
B	Test 2	6.55\%	0	2	\#NUM!	0.0 years
C	Test 3	6.55\%	0	2	\#NUM!	0.0 years
D	Test 4	6.55\%	0	2	\#NUM!	0.0 years

## Recommendation :

## Refurbish Pump

## Notes/Comments :

## Refurbish CW Pump

Justification of this project is based on a capital cost of $\$ 452,421$ and an increasing probability of failure over the life of the asset. Capacity loss in the event of a failure is 154 MW for 504 hours. Total avoided costs for 2011 and 2012 in the event of a failure are $\$ 317,024$ and $\$ 370,560$ respectively.

## Test 2

## Test 3

## Test 4

Refurbish BFP

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	317,024	$(452,421)$	18,097	434,324	$(135,397)$	$(97,371)$	$(232,768)$	1.000	$(232,768)$	$(232,768)$
2012	-	370,561	-	34,746	399,578	370,561	$(104,172)$	266,389	0.937	249,709	16,941
2013	-	431,565	-	31,966	367,612	431,565	$(123,876)$	307,690	0.879	270,363	287,303
2014	-	494,697	-	29,409	338,203	494,697	$(144,298)$	350,400	0.824	288,612	575,915
2015	-	560,016	-	27,056	311,147	560,016	$(165,218)$	394,799	0.772	304,820	880,736
2016	-	741,877	-	24,892	286,255	741,877	$(222,266)$	519,612	0.724	376,066	1,256,802
2017	-	930,272	-	22,900	263,355	930,272	$(281,285)$	648,986	0.678	440,289	1,697,090
2018	-	-	-	21,068	242,286	-	6,531	6,531	0.636	4,153	1,701,244
2019	-	-	-	19,383	222,903	-	6,009	6,009	0.596	3,582	1,704,826
2020	-	-	-	17,832	205,071	-	5,528	5,528	0.559	3,089	1,707,915
2021	-	-	-	16,406	188,665	-	5,086	5,086	0.524	2,664	1,710,579
2022	-	-	-	15,093	173,572	-	4,679	4,679	0.491	2,297	1,712,876
2023	-	-	-	13,886	159,686	-	4,305	4,305	0.460	1,981	1,714,857
2024	-	-	-	12,775	146,911	-	3,960	3,960	0.431	1,709	1,716,566
2025	-	-	-	11,753	135,159	-	3,643	3,643	0.404	1,473	1,718,039
2026	-	-	-	10,813	124,346	-	3,352	3,352	0.379	1,271	1,719,310
2027	-	-	-	9,948	114,398	-	3,084	3,084	0.355	1,096	1,720,406
2028	-	-	-	9,152	105,246	-	2,837	2,837	0.333	945	1,721,351
2029	-	-	-	8,420	96,827	-	2,610	2,610	0.312	815	1,722,166
2030	-	-	-	7,746	89,081	-	2,401	2,401	0.293	703	1,722,869
2031	-	-	-	7,126	81,954	-	2,209	2,209	0.274	606	1,723,475
2032	-	-	-	6,556	75,398	-	2,032	2,032	0.257	523	1,723,998
2033	-	-	-	6,032	69,366	-	1,870	1,870	0.241	451	1,724,449
2034	-	-	-	5,549	63,817	-	1,720	1,720	0.226	389	1,724,837
2035	-	-	-	5,105	58,711	-	1,583	1,583	0.212	335	1,725,173
2036	-	-	-	4,697	54,014	-	1,456	1,456	0.199	289	1,725,462
2037	-	-	-	4,321	49,693	-	1,340	1,340	0.186	249	1,725,711
2038	-	-	-	3,975	45,718	-	1,232	1,232	0.174	215	1,725,926
2039	-	-	-	3,657	42,060	-	1,134	1,134	0.164	185	1,726,112
2040	-	-	-	3,365	38,696	-	1,043	1,043	0.153	160	1,726,271
2041	-	-	-	3,096	35,600	-	960	960	0.144	138	1,726,409
2042	-	-	-	2,848	32,752	-	883	883	0.135	119	1,726,528
2043	-	-	-	2,620	30,132	-	812	812	0.126	103	1,726,631
2044	-	-	-	2,411	27,721	-	747	747	0.118	88	1,726,719
2045	-	-	-	2,218	25,504	-	687	687	0.111	76	1,726,796
2046	-	-	-	2,040	23,463	-	632	632	0.104	66	1,726,861
2047	-	-	-	1,877	21,586	-	582	582	0.098	57	1,726,918
2048	-	-	-	1,727	19,859	-	535	535	0.091	49	1,726,967
2049	-	-	-	1,589	18,271	-	493	493	0.086	42	1,727,009
2050	-	-	-	1,462	16,809	-	557	557	0.080	45	1,727,054
Total	,	3,846,013	$(452,421)$	435,612	5,235,750	3,393,592	(1,061,951)	2,331,641	14.768	1,727,054	61,294,328



# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 28393

Title: POT 2A Mill and Feeder Refurbishment

Start Date:	$2011 / 06$
Final Cost Date:	$2011 / 12$
Function:	Generation
Forecast Amount:	$\$ 424,712$

## DESCRIPTION:

This project is to refurbish the Point Tupper 2A Mill and Feeder system. The scope of work will include:

- Replace rotating elements such as journals, shafts
- Replace mill liners, tables and vane wheels
- Upgrade the mill's coal feeder
- Replace obsolete speed controller
- Upgrade drive assembly

The journal assemblies, table and mill rotating elements are nearly twenty years old and many of the rotating component clearances now exceed Original Equipment Manufacturer (OEM) recommendations.

Replacement of the vane wheel and various liners throughout the mill will result in increased throughput in the mill, allowing the Unit to achieve full load operation.

The upgrade of the coal feeder related to this mill includes upgrading the obsolete speed controller.
Summary of Related CI's +/- 2 years
2009 - CI 28392 - POT 2B Mill and Feeder Refurbishment \$488,457

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

Timely refurbishments of the plant's mills are important to ensure unit availability is maximized. A number of initiatives have been undertaken to extend component life, reduce mill forced outages, maximize mill availability and extend running hours between overhauls. Completing this project will improve mill performance and extend the maintenance lifecycle on mill rotating elements.

## Why do this project now?

Based on an evaluation completed by plant personnel with the assistance of the OEM, refurbishment of the 2 A mill is now required. This is based on the operating hours and normal wear of the mill's components.

## Why do this project this way?

Refurbishment is the most practical and cost effective option.


## Original Cost:

## CI 28393 - POT 2A Mill and Feeder Refurbishment

The following is a breakdown of costs associated with the POT 2A Mill and Feeder Refurbishment

Administrative Overheads and Interest Labour
Materials
Contracts
Other
Total


The estimate for this project is based on CI 28392 - POT 2B Mill and Feeder Refurbishment, which was completed in 2009. This project is similar in scope to CI 28392. The actual expenditures for CI 28392 were as follows:

Administrative Overheads and Interest $\$ 35,217$
Labour \$135,736
Materials \$309,727
Total \$488,457

## 2A Mill and Feeded refurbishment Summary of Alternatives



## Recommendation :

Complete refurbishment of the mill and feeder

## Notes/Comments :

Refurbish mill and feeder
Justification of this project is based on a capital cost of $\$ 424,711$ with an increasing probability of failure over the life of the asset if the refurbishment is not completed in 2011. Total capacity loss for this low-cost energy source is estimated to be 10MW for two months in the event of an un-planned failure. Total avoided replacement energy and repair costs for 2011 and 2012 are $\$ 214,144$ and $\$ 220,892$ respectively.

## Test 2

## Test 3

## Test 4

2A Mill and Feeded refurbishment

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	214,144	$(424,711)$	16,988	407,723	$(210,567)$	$(64,282)$	$(274,849)$	1	$(274,849)$	$(274,849)$
2012	-	220,892	-	32,618	375,105	220,892	$(58,430)$	162,462	1	152,289	$(122,559)$
2013	-	230,336	-	30,008	345,096	230,336	$(62,102)$	168,235	1	147,825	25,266
2014	-	240,166	-	27,608	317,489	240,166	$(65,948)$	174,218	1	143,498	168,764
2015	-	250,399	-	25,399	292,090	250,399	$(69,750)$	180,649	1	139,477	308,241
2016	-	272,139	-	23,367	268,722	272,139	$(77,119)$	195,019	1	141,144	449,385
2017	-	283,682		21,498	247,225	283,682	$(81,277)$	202,405	1	137,316	586,701
2018	-	295,699	-	19,778	227,447	295,699	$(85,536)$	210,164	1	133,652	720,354
2019	-	308,210	-	18,196	209,251	308,210	$(89,905)$	218,306	1	130,137	850,491
2020	-	321,236	-	16,740	192,511	321,236	$(94,394)$	226,842	1	126,759	977,249
2021	-	334,799	-	15,401	177,110	334,799	$(99,013)$	235,785	1	123,506	1,100,755
2022	-	348,920	-	14,169	162,941	348,920	$(103,773)$	245,147	0	120,369	1,221,124
2023	-	363,624	-	13,035	149,906	363,624	$(108,682)$	254,941	0	117,339	1,338,463
2024	-	378,935	-	11,992	137,913	378,935	$(113,752)$	265,183	0	114,411	1,452,874
2025	-	394,878	-	11,033	126,880	394,878	$(118,992)$	275,886	0	111,575	1,564,449
2026	-	411,482	-	10,150	116,730	411,482	$(124,413)$	287,069	0	108,828	1,673,277
2027	-	428,772	-	9,338	107,392	428,772	$(130,024)$	298,748	0	106,164	1,779,441
2028	-	446,779	-	8,591	98,800	446,779	$(135,838)$	310,941	0	103,578	1,883,019
2029	-	465,533	-	7,904	90,896	465,533	$(141,865)$	323,668	0	101,066	1,984,085
2030	-	485,066	-	7,272	83,624	485,066	$(148,116)$	336,950	0	98,625	2,082,710
2031	-	-	-	6,690	76,935	-	2,074	2,074	0	569	2,083,279
2032	-	-	-	6,155	70,780	-	1,908	1,908	0	491	2,083,770
2033	-	-	-	5,662	65,117	-	1,755	1,755	0	423	2,084,193
2034	-	-	-	5,209	59,908	-	1,615	1,615	0	365	2,084,558
2035	-	-	-	4,793	55,115	-	1,486	1,486	0	315	2,084,873
2036	.	-	-	4,409	50,706	-	1,367	1,367	0	271	2,085,144
2037	-	.	.	4,056	46,650	-	1,258	1,258	0	234	2,085,379
2038	-	-	-	3,732	42,918	-	1,157	1,157	0	202	2,085,580
2039	-	-	-	3,433	39,484	-	1,064	1,064	0	174	2,085,754
2040	.	.	.	3,159	36,326	-	979	979	0	150	2,085,905
2041	-	-	-	2,906	33,419	-	901	901	0	129	2,086,034
2042	-	.	-	2,674	30,746	-	829	829	0	112	2,086,146
2043	-	-	-	2,460	28,286	-	762	762	0	96	2,086,242
2044	-	-	-	2,263	26,023	-	701	701	0	83	2,086,325
2045	-	-	-	2,082	23,941	-	645	645	0	72	2,086,397
2046	-	-	-	1,915	22,026	-	594	594	0	62	2,086,458
2047	-	-	-	1,762	20,264	-	546	546	0	53	2,086,512
2048	-	-		1,621	18,643	-	503	503	0	46	2,086,558
2049	-	-	-	1,491	17,152	-	462	462	0	40	2,086,597
2050	.	-	.	1,372	15,779	-	523	523	0	42	2,086,639
Total	-	6,695,692	$(424,711)$	408,932	4,915,069	6,270,981	$(1,952,081)$	4,318,900	15	2,086,639	61,481,584



## CI Number: 39935

Title: TRE - Facilities Improvements
Start Date: 2011/03
Final Cost Date: 2011/12
Function: Generation
Forecast Amount: \$411,950

## DESCRIPTION:

The Trenton Generating Station was built in phases over the period of time from 1950 to 1991. This project addresses the last of a 5 phase facility upgrade.

In 2007, Phase One of the Facilities Improvement Project was initiated to address issues related to the age of the facilities. Phase Two, completed in 2008, was a maintenance locker room / shower room renovation, control room renovation, and a storeroom improvement. Phase Three of this Facilities Improvement project was completed in 2009 and focused on upgrading the electrical / instrumentation locker room / shower room, additional locker / shower facilities for term employees, renovation of the administration washrooms, as well as the relocation of the equipment room of the Emergency Response Team. In 2010, the scope of the project included control room desk replacements, permit room improvements, and exterior plant improvements.

The final phase of this project will be completed in 2011 and includes remaining washroom upgrades, roadway remediation to address what had been maintained through normal patching but no longer possible, lunch area upgrades, removal of obsolete equipment, and remaining maintenance shop upgrades.

Summary of Related CI's +/- 2 years:
2009-30830 Facilities Improvement Phase 3 \$102,798
2010-37622 Facilities Improvement Project - Ph. 4 \$499,499

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Buildings

## Why do this project?

Although regular maintenance and upkeep has been ongoing in these areas, the facilities have experienced normal wear over time and must be improved to provide suitable working areas for employees. Improvements completed in the first four phases have addressed all concern areas intended.

## Why do this project now?

This project should proceed now to provide suitable washroom and lunch room areas as planned. Roadway conditions must be addressed to mitigate the risk of safety incidents and avoid increasing maintenance costs. Removal of large obsolete equipment from an older area of the maintenance shop that is now a highvolume pedestrian area will mitigate the potential for safety incidents.

## Why do this project this way?

Completing the final phase of this project in this manner will provide suitable facilities for plant employees, mitigate the risk of minor safety incidents and have a positive impact on employee morale.

- TRE - Facilities Improvements

Project Number

Parent CI Number	$:$
Cost Centre	$: 341$

## Approved Date



# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 39760

Title: TUC - Asbestos Abatement 2011
Start Date: 2011/02
Final Cost Date: 2011/12
Function: Generation
Forecast Amount: \$384,297

## DESCRIPTION:

Asbestos insulation is being removed from Tuft's Cove Generating Station as part of a multi-year plan. This project includes building a type-3 asbestos enclosure at the auxiliary boiler, completely dismantling the auxiliary boiler, removal of asbestos and disposing of all of the waste. Upon completing the work in 2011, approximately $85 \%$ of the asbestos inventory will be removed from the plant.

Summary of Related CI's +/- 2 years
2009-30464 TUC Asbestos Abatement 2009 \$200,924
2010-34484 TUC Asbestos Abatement 2010 \$ 201,165

## JUSTIFICATION:

Justification Criteria: Health \& Safety
Why do this project?
Removing asbestos insulation reduces the risk of asbestos particles becoming air-borne in those areas where encapsulating is no longer viable for sustained protection due to frequency of repair due to vibration or operating condition.

## Why do this project now?

The removal of asbestos-contaminated insulation is being completed in a staged program in accordance with NSPI's asbestos management plan. The areas to be addressed in 2011 are in accordance with the plant's asbestos management plan and inventory.

## Why do this project this way?

The removal of the asbestos contaminated material is based on applied industry practices. Encapsulating is used to seal asbestos where practical. Removal is then planned to reduce the level of asbestos in a controlled manner in the operating plant.

CI Number : 39760
Parent CI Number : -

Cost Centre : 311

- 311-Tufts Cove Admin./Common Capita


## Approved Date

Budget Version 2011 ACE Plan

Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
001		001 - THERMAL Regular Labour			6,080	0	6,080
013		013 - POWER PRODUCTION Contracts				0	
094		094 - Interest Capitalized			19,123	0	19,123
095		095-Thermal Regular Labour AO			1,460	0	1,460
095		095-Thermal \& Hydro Contracts AO				0	
				Total Cost:	384,297	0	384,297

Original Cost:

## CI 39760 - TUC Asbestos Abatement 2011

The following is a breakdown of costs associated with the Asbestos Abatement 2011:
Administrative Overheads and Interest Labour Contracts
Total


The contracts estimate of \$ is based on the vendor quotes attached and NSPI engineering staff experience with asbestos abatement projects completed in the recent past.

Pages 509-512 have been removed due to confidentiality.

## CI Number: 39946

Title: TRE - Wastewater Treatment Plant Expansion Joint Replacement
Start Date: 2011/04
Final Cost Date: 2011/10
Function: Generation
Forecast Amount: \$353,531

## DESCRIPTION:

The operating permit for the Trenton Generating Station requires that the integrity of the wastewater basins be maintained to ensure that water discharged from the site meets environmental guidelines, based on the Environmental Code of Practice for Steam Electric Power Generation. The basins were commissioned in 1991 with the commissioning of Unit \#6.

Preliminary inspections in September 2008 revealed that the expansion joints in the basins were in a state of degradation, consistent with 20 years of service and would need to be refurbished in the future. Follow-up inspections, with a basin drained, resulted in evidence of small leaks between the basins, not to the exterior of the basins. The scope of this project includes inspection and refurbishment of the wastewater basins to ensure their integrity is maintained and the risk of uncontrolled release of wastewater is mitigated. The refurbishment includes replacement of the expansion joint in the A Basin and repair of the basin's protective coating and sealant.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Environment
Sub Criteria: Equipment Replacement
Why do this project?
Remedial action is required to ensure the integrity of the wastewater basins is maintained.

## Why do this project now?

This project must be completed now to ensure the integrity of the basins is maintained and mitigate the risk of wastewater being released in an uncontrolled manner. Completing this project now in a planned manner will avoid more costly repairs and remedial work in the event that an external leakage suddenly occurred.

## Why do this project this way?

Complete inspection of the wastewater basins and refurbishment is the most practical and cost effective solution.


## CI Number: 26472

Title: TRE - 6A Cooling Water Pump Refurbishment
Start Date: 2011/02
Final Cost Date: 2011/04
Function: Generation
Forecast Amount: \$349,690

## DESCRIPTION:

The Trenton Unit \#6 circulating water (CW) system supplies cooling water to the steam condenser. Cooling water is drawn from a shoreline intake through a pair of traveling screens by two vertical singlestage pumps. The water is then pumped through the CW piping and into the steam condenser inlet. These pumps also supply cooling water to the turbine lube-oil coolers, general service cooling water coolers, hydrogen coolers and vacuum pump heat exchangers.

The 6A CW pump is a salt water service, single stage, vertical mixed-flow pump rated at approximately 61,000 US gpm, with a 950 horsepower motor. Completing a pump overhaul and refurbishment will reduce the risk of an unexpected pump failure and associated replacement energy costs, resulting from a forced unit derating.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

The overhaul and refurbishment of the 6A cooling water pump is required in 2011 based on the plant's Life Cycle Management Program. The pump was last inspected in the mid 1990's. Based on the duration the pump has been in operation since the last inspection, it is anticipated that the shafts, shaft sleeves, impeller and inlet casing will require refurbishment or replacement. The pump will be disassembled and inspected to confirm components requiring refurbishment or replacements. Based on the inspection results, the worn components will be refurbished or replaced as required. During certain times of the year (typically April to October), the Trenton Generating Station must operate both CW pumps to achieve full load. If one CW pump is forced out of service, the average output drops by 48 MW due to loss of vacuum.

## Why do this project now?

The pump must be overhauled and refurbished in 2011. Not completing this pump overhaul could reduce the availability of cooling water to Trenton Unit \#6. An unplanned outage in the spring, summer or fall would reduce the volume of cooling water to Unit \#6 such that it could not operate at full load. This would decrease generation output and could result in the purchase of replacement energy. Even though there are minimal diagnostic concerns in performance, completing internal inspection and overhaul now will ensure a more costly in-service failure does not occur.

## Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan

Based on experience and condenser design data, the pump can be shut down when river water temperatures drop to 4 degrees Celsius without having to reduce generation. With these cooler water temperatures, the 6B CW pump can provide cooling water demand while the 6A CW pump is refurbished. Historical data indicates that the best timeframe to complete this work is between November and March. This refurbishment would ensure the continued reliability of the pump, while minimizing the risk of unplanned failure and associated maintenance costs.

## Why do this project this way?

The most cost-effective option is to refurbish the CW pump during a planned outage. The option to replace the pump with a new pump was evaluated and is not the most cost-effective option. The worn components that require replacement or refurbishment will be identified when the pump is shut down and inspected.


## TRE6-6A CW Pump Refurbishment <br> Summary of Alternatives



## Recommendation :

Refurbish 6A CW Pump

Notes/Comments :

## Refurbish 6A CW Pump

Justification of this project is based on a capital cost of $\$ 349,690$, an avoided capacity loss of 47.5MW for 1 week, and a total avoided replacement energy cost in 2011 and 2012 of $\$ 163,590$ and $\$ 166,861$ respectively.

## Test 2

## Test 3

## Test 4

TRE 6 - 6A CW Pump Refurbishment

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	163,590	$(349,690)$	13,988	335,702	$(186,100)$	$(48,791)$	$(234,891)$	1.000	$(234,891)$	$(234,891)$
2012	-	166,862	-	26,856	308,846	166,862	$(43,455)$	123,407	0.937	115,679	$(119,211)$
2013	-	170,199	-	24,708	284,139	170,199	$(45,102)$	125,097	0.879	109,921	$(9,291)$
2014	-	173,603	-	22,731	261,407	173,603	$(46,815)$	126,788	0.824	104,431	95,140
2015	-	177,075	-	20,913	240,495	177,075	$(48,410)$	128,665	0.772	99,341	194,481
2016	-	180,617	-	19,240	221,255	180,617	$(50,027)$	130,590	0.724	94,514	288,994
2017	-	184,229		17,700	203,555	184,229	$(51,624)$	132,605	0.678	89,963	378,957
2018	-	187,913	-	16,284	187,270	187,913	$(53,205)$	134,708	0.636	85,667	464,624
2019	-	191,672	-	14,982	172,289	191,672	$(54,774)$	136,898	0.596	81,608	546,232
2020	-	195,505	-	13,783	158,506	195,505	$(56,334)$	139,171	0.559	77,768	624,000
2021	-	199,415	-	12,680	145,825	199,415	$(57,888)$	141,527	0.524	74,133	698,133
2022	-	203,404	-	11,666	134,159	203,404	$(59,439)$	143,965	0.491	70,688	768,821
2023	-	207,472	-	10,733	123,426	207,472	$(60,989)$	146,483	0.460	67,420	836,241
2024	-	211,621	-	9,874	113,552	211,621	$(62,542)$	149,080	0.431	64,319	900,560
2025	-	215,854	-	9,084	104,468	215,854	$(64,098)$	151,755	0.404	61,374	961,934
2026	-	-	-	8,357	96,111	.	2,591	2,591	0.379	982	962,916
2027	-	-	-	7,689	88,422	-	2,384	2,384	0.355	847	963,763
2028	-	-	-	7,074	81,348	-	2,193	2,193	0.333	730	964,493
2029	-	-	-	6,508	74,840	-	2,017	2,017	0.312	630	965,123
2030	-	-	-	5,987	68,853	-	1,856	1,856	0.293	543	965,666
2031	-	-	-	5,508	63,345	-	1,708	1,708	0.274	469	966,135
2032	-	-	-	5,068	58,277	-	1,571	1,571	0.257	404	966,539
2033	-	-	.	4,662	53,615	-	1,445	1,445	0.241	348	966,887
2034	-	-	-	4,289	49,326	-	1,330	1,330	0.226	300	967,188
2035	-	-	-	3,946	45,380	-	1,223	1,223	0.212	259	967,447
2036	-	-	-	3,630	41,749	-	1,125	1,125	0.199	223	967,670
2037	-	-	-	3,340	38,409	-	1,035	1,035	0.186	193	967,863
2038	-	-	-	3,073	35,337	-	953	953	0.174	166	968,029
2039	-	-	-	2,827	32,510	-	876	876	0.164	143	968,173
2040	-	-	-	2,601	29,909	-	806	806	0.153	124	968,296
2041	-	-	-	2,393	27,516	-	742	742	0.144	107	968,403
2042	-	-	-	2,201	25,315	-	682	682	0.135	92	968,495
2043	-	-	-	2,025	23,290	-	628	628	0.126	79	968,574
2044	-	-	-	1,863	21,427	-	578	578	0.118	68	968,643
2045	-	-	-	1,714	19,712	-	531	531	0.111	59	968,702
2046	-	-	-	1,577	18,135	-	489	489	0.104	51	968,752
2047	-	-	-	1,451	16,685	-	450	450	0.098	44	968,796
2048	-	-	-	1,335	15,350	-	414	414	0.091	38	968,834
2049	-	-	-	1,228	14,122	-	381	381	0.086	33	968,867
2050	.	-	-	1,130	12,992	-	431	431	0.080	35	968,901
Total	-	2,829,030	$(349,690)$	336,698	4,046,871	2,479,340	(775,055)	1,704,285	14.768	968,901	30,577,881



## CI Number: 40427

Title: LIN3 Turbine Fire Suppression
Start Date: 2011/04
Final Cost Date: 2011/09
Function: Generation
Forecast Amount: $\quad \$ 348,710$

## DESCRIPTION:

This project includes the addition of a fixed fire protection system for the Unit \#3 steam turbine generator at the Lingan Generating Station. At the time of construction, fire protection requirements were adequate, but a recent risk analysis identified that existing fire protection around the turbine generator no longer meets current industry standards.

Summary of Related CI's +/- 2 years
2009-29039 LIN4 Fire Protection Turbine Hall \$607,020
2010-38846 LIN1 Fire Protection Turbine Hall \$293,891
2011 - 40184 LIN2 Turbine Fire Suppression \$343,611

## JUSTIFICATION:

Justification Criteria: Health \& Safety

## Why do this project?

In a recent assessment of fire protection systems at all NSPI thermal plants, the highest risk items identified were those associated with the turbine generator area of the plants. This risk is best mitigated by applying a fixed fire protection system around the equipment in this area as well as drainage for hydraulic oils and lubricants. A system of similar design was installed on Lingan’s Unit \#4 in 2009 and Unit \#1 in 2010. The system design and construction on these two units is similar to the fire suppression system to be installed on Unit \#3. In the event of a turbine fire, it is industry experience that these fire systems reduce outage durations and repair costs.

## Why do this project now?

As a result of recent inspections, NSPI's insurance providers have recommended the need to introduce additional fire protection system modifications. Completing this project now will ensure the fire protection system is returned to current industry standards providing adequate loss control.

## Why do this project this way?

The benchmark study used for assessing loss control practices are NFPA 850 and FM DS7-1 01. Although they are recommended practices, they have become accepted industry guidelines that are widely used by insurers for risk assessments in power generation facilities. The new fire protection system will be integrated into the existing current system.


## CI 40427 - LIN3 Turbine Fire Suppression

The following is a breakdown of costs associated with the LIN3 Turbine Fire Suppression
Administrative Overheads and Interest Labour
Materials
Contracts
Other
Total


The contracts estimate of \$ is based on the attached vendor quotation for the work completed in 2010 under CI 38846 - LIN1 Fire Protection Turbine Hall. The contracts estimate for this project has been increased by $10 \%$ over the amount in the attached vendor quote to account for price escalation and minor differences in project scope.

The labour estimate is mostly regular labour per the attached account breakdown and detailed estimate. The estimate is based on the hourly rates per the collective agreement and the hours required to complete the project. The number of hours required is based on experienced gained in completion of CI 38846 - LIN1 Fire Protection Turbine Hall.

Station: LINGAN GENERATING STATION
CI Number: 40427
Project: LIN3-Fire Suppression Turbine \& Generator
Project
Description Installation of a Fire Suppression System, Lingan Unit 3 Turbine and Generator
:

Item	Description	Rate (\$/hr)	Qty	Cost Est	Totals
1	Regular Plant Labor				
	Engineering			\$6,580	
	Maintenance Supervision			\$3,360	
	Mechanical Trades	\$32	960	\$30,720	
	Sub-Total Plant Resources				\$40,660
2	Term Labor				
	Utilities Trades. Staging, forms, etc	\$30	1400	\$42,000	
	Sub-Total Term Resources				\$42,000
3	Material				
	Misc Materials - welding, brackets, curbs, etc		1		
	Sub-Total Materials				
4	Contracts				
	Fire Protection System Fixed Price Contract Misc Rentals and services - (access boom, MacTron tie in and commission)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$		
	Sub-Total Contracts				
5	Travel Expense				
	Gen Services. Supplier technical review and progress monitor	\$2,000	3	\$6,000	\$6,000
6	A/O Charges				
	Interest Capitalized/Construction Overhead	\$11,973	1		
	AO - Therm and Hydro Contracts		1		
	AO- Thermal Regular labor	\$9,282	1		
	AO- Thermal OT labor	\$240	1		
	AO- Thermal Term labor	\$10,084	1		
	Sub-Total A/O Charges				
	Total Project Estimate				\$348,710

Estimate Assumptions:
Scope is very similar to LIN project in 2010.

Pages 525-547 have been removed due to confidentiality.

Generating Station	Area	Protection	Investiment Timeframe				
			2010	2011	2012	2013	2014
Lingan	Unit 1 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler	X				
	Fire System Electrical Panel Upgrades		X				
	Fire System Valve Replacement		X				
	Unit 1 Burner Front	Wet Automatic Sprinkler	X				
	Unit 2 Burner Front	Wet Automatic Sprinkler	X				
	Unit 2 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler		X			
	Unit 3 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler		X			
	Unit 3 Burner Front	Wet Automatic Sprinkler		X			
	Unit 4 Burner Front	Wet Automatic Sprinkler		X			
	Unit 1/2 Cable Spreading Room Elev. $112.5 \mathrm{~m}(4 \mathrm{~m} \mathrm{X} 12 \mathrm{~m} \mathrm{X}$ 36 m) 1728 cubic metres, 61,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action			X		
	Unit 1/2 Cable Spreading Room Elev. $120.2 \mathrm{~m} \mathrm{(3} \mathrm{~m} \mathrm{X} 12 \mathrm{~m} \mathrm{X}$   $42.3 \mathrm{~m}) 1522$ cubic metres, 54,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action			X		
	Unit 3/4 Cable Spreading Room Elev. 112.5 m (4 m X 12 m X 36 m) 1728 cubic metres, 61,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action			X		
	Unit 3/4 Cable Spreading Room Elev. 120.2 m (3 m X 12 m X 42.3 m) 1522 cubic metres, 54,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action			X		
Point Aconi	Unit 1 Burner Fronts	Wet Automatic Sprinkler		X			
	Unit 1 Switch Gear Room Elevation 107.2 m ( 25 m X 14.5 m X 6 m) 2175 cubic metres, 77,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action		X			
	Unit 1 Relay Room Elevation 113.2 m ( $25 \mathrm{~m} \times 14.5 \mathrm{~m}$ X 6 m ) 2175 cubic metres, 77,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action		X			
	Unit 1 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler					X
Point Tupper	Unit 1/2 Cable Spreading Room Elevation ( 100 m X $5 \mathrm{~m} \times 2.5$ m) 1250 cubic metres, 45,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action				X	
	Fire System Electrical Panel Upgrade					X	
	Unit 1 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler					X
	Replace Fire Pumps - More Capacity						X
Trenton	Fire System Upgrades		X				
	Unit 5 Burner Front	Wet Automatic Sprinkler	X				
	Unit 6 Burner Front	Wet Automatic Sprinkler		X			
	Unit 5 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler			X		
	Unit 6 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler			X		
	Unit 64160 Switchgear Cable Spreading Room Elevation 29.8 m ( $7.6 \mathrm{~m} \times 37.8 \mathrm{~m} \times 3 \mathrm{~m}) 860$ cubic metres, 30,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action			X		
	Unit 6 MCC Cable Spreading Room Elevation $22.7 \mathrm{~m} \mathrm{(7.6} \mathrm{~m} \mathrm{X}$ 37.8 m X 3 m) 860 cubic metres, 30,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action			X		
	Unit 5 Relay Room Elev 42 ft ( $50 \mathrm{ft} \times 30 \mathrm{ft} \times 12 \mathrm{ft}$ ) 18,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action				X	
	Unit 54160 v Switch Gear Room Elev. 73' 0" (100' X 20' X 15') 30,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action				X	
	Unit 54160 v Switch Gear Cable Area Elev. 57' 6" (100' X 20' X 15') 30,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action				X	
Tufts Cove	Unit 1 Burner Front	Wet Automatic Sprinkler	X				
	Unit 2 Burner Front	Wet Automatic Sprinkler	X				
	Unit 3 Burner Front	Wet Automatic Sprinkler	X				
	TUC 6 Turbine-Generator and Lube Oil Sprinkler, Transformer Deluge.	Pre Action Water Sprinkler and Deluge	X				
	Unit 2 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler				X	
	Unit 3 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler				X	
	Fire System Electrical Panel Upgrade					X	
	Unit 1 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler					X
	Cable Spreading/Relay Room	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action					X

## CI Number: 40184

Title: LIN2 Turbine Fire Suppression
Start Date: 2011/04
Final Cost Date: 2011/09
Function: Generation
Forecast Amount: \$343,611

## DESCRIPTION:

This project includes the addition of a fixed fire protection system for the Unit \#2 steam turbine generator at the Lingan Generating Station. At the time of construction, fire protection requirements were adequate, but a recent risk analysis identified that existing fire protection around the turbine generator no longer meets current industry standards.

Summary of Related CI's +/- 2 years
2009-29039 LIN4 Fire Protection Turbine Hall \$607,020
2010-38846 LIN1 Fire Protection Turbine Hall \$293,891
2011 - 40427 LIN3 Turbine Fire Suppression \$348,710

## JUSTIFICATION:

Justification Criteria: Health \& Safety

## Why do this project?

In a recent assessment of fire protection systems at all NSPI thermal plants, the highest risk items identified were those associated with the turbine generator area of the plants. This risk is best mitigated by applying a fixed fire protection system around the equipment in this area as well as drainage for hydraulic oils and lubricants. A system of similar design was installed on Lingan's Unit \#4 in 2009 and Unit \#1 in 2010. The system design and construction on these two units is similar to the fire suppression system to be installed on Unit \#2. In the event of a turbine fire, it is industry experience that these fire systems reduce outage durations and repair costs.

## Why do this project now?

As a result of recent inspections, NSPI's insurance providers have recommended the need to introduce additional fire protection system modifications. Completing this project now will ensure the fire protection system is returned to current industry standards providing adequate loss control.

## Why do this project this way?

The benchmark study used for assessing loss control practices are NFPA 850 and FM DS7-1 01. Although they are recommended practices, they have become accepted industry guidelines that are widely used by insurers for risk assessments in power generation facilities. The new fire protection system will be integrated into the existing current system.


## CI 40184 - LIN2 Turbine Fire Suppression

The following is a breakdown of costs associated with the LIN2 Turbine Fire Suppression

Administrative Overheads and Interest
Labour
Materials
Contracts
Other


The contracts estimate of is based on the attached vendor quotation for the work completed in 2010 under CI 38846 - LIN1 Fire Protection Turbine Hall. The contracts estimate for this project has been increased by $10 \%$ over the amount in the attached vendor quote to account for price escalation.

The labour estimate is mostly regular labour per the attached account breakdown and detailed estimate. The estimate is based on the hourly rates per the collective agreement and the hours required to complete the project. The number of hours required is based on experienced gained in the completion of CI 38846 - LIN1 Fire Protection Turbine Hall.

Please refer to CI 40427, Confidential Attachment 3 for the recent assessment of fire protection systems and Confidential Attachment 4 for the 5 year Plan.

LINGAN GENERATING STATION

CI Number:
40184

Project: LIN2-Fire Suppression Turbine \& Generator
Project
Description:
Installation of a Fire Suppression System, Lingan Unit 2 Turbine and Generator
Pre-action suppression system on the turbine and generator bearings and electrical components and the necessary standard wet sprinkler coverage of the area including
Scope statements the various grated mezzanines present. Coverage flow rates for the aforementioned sprinklers are as prescribed in NFPA 850 and NFPA 13. Subcontract installation with LIN support for special access to turbine sections, bracket welds and floor level containment curbs

Item	Description	Rate (\$/hr)	Qty	Cost Est	Totals
1	Regular Plant Labor				
	Engineering			\$6,580	
	Maintenance Supervision			\$3,360	
	Mechanical Trades	\$32	960	\$30,720	
	Sub-Total Plant Resources				\$40,660
2	Term Labor				
	Utilities Trades. Staging, forms, etc	\$30	1400	\$42,000	
	Sub-Total Term Resources				\$42,000
3	Material				
	Misc Materials - welding, brackets, curbs, etc		1		
	Sub-Total Materials				
4	Contracts				
	Fire Protection System Fixed Price Contract		1		
	Misc Rentals and services - (access boom, MacTron tie in and commission)		1		
	Sub-Total Contracts				
5	Travel Expense				
	Gen Services. Supplier technical review and progress monitor	\$2,000	3	\$6,000	\$6,000
6	A/O Charges				
	Interest Capitalized/Construction Overhead	\$7,504	1		
	AO - Therm and Hydro Contracts		1		
	AO- thermal Re labor	\$9,282	1		
	AO- Thermal OT labor	\$240	1		
	AO- Thermal Term labor	\$10,084	1		
	Sub-Total A/O Charges				
	Total Project Estimate				\$343,612

Estimate Assumptions:
Scope is similar to LIN project in 2010.

## Page 553 has been removed due to confidentiality.

## CI Number: 28554

Title: POT - Analytical Panel and Analyzer Replacement
Start Date: 2011/03
Final Cost Date: 2011/12
Function: Generation
Forecast Amount: \$343,220

## DESCRIPTION:

The scope of this project includes the replacement of the existing analytical panel at the Point Tupper Generating Station. The existing panel was originally installed in 1973 and was refurbished in 1987. The equipment is now obsolete and must be replaced with current technology that will result in reliable performance and accuracy of the readings obtained to ensure water chemistry accuracy.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Equipment Replacement

## Why do this project?

The analytical equipment is crucial to the operation and life expectancy of the boiler. Having accurate knowledge of the feed water condition at all times allows for appropriate treatment of the water through dosing with the correct chemicals at the right concentrations. The existing panel and analyzer must be replaced to ensure reliable analysis of boiler and steam chemistry. Current technology for sample analysis must be employed to ensure long term performance of the analytical system for boiler chemistry monitoring and adequate protection of the boiler.

## Why do this project now?

The analytical equipment is obsolete and must be replaced.

## Why do this project this way?

Replacement of the analytical panel is the only solution to provide reliable analysis of boiler and steam chemistry.


## CI 28554 - POT Analytical Panel and Analyzer Replacement

The following is a breakdown of costs associated with the Analytical Panel and Analyzer Replacement

Administrative Overheads and Interest	$\$$
Labour	$\$$
Materials	$\$$
Other	$\$ 5,500$
Total	$\$ 343,220$

The materials estimate is based on the attached vendor quotation.
The labour estimate is based on NSPI engineering staff experience with projects of similar scope.

Pages 557-560 have been removed due to confidentiality.

## Analytical panel and analyzer replacement Summary of Alternatives

Budget Year : Division :	2011
	Power Production
Department :	Point Tupper Generating Station
Originator :	

Date :
Cl Number:
Project No.:

22-Dec-10
28554


	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Replace panel and analyzer	6.68\%	452,205	1	14.49\%	14.6 years
B	Test 2	6.68\%	0	2	\#NUM!	0.0 years
c	Test 3	6.68\%	0	2	\#NUM!	0.0 years
D	Test 4	6.68\%	0	2	\#NUM!	0.0 years

Recommendation :
$\square$
Notes/Comments :
Replace panel and analyzer
Justification of this project is based on an a capital cost of $\$ 343,220$ and an increasing probability of failure if the replacement is not completed in 2011. Total capacity loss is estimated at 150 MW for a 2 -day period with increasing outage duration as the equipment continues to age. Total avoided replacement energy costs in 2011 and 2012 are $\$ 9,101$ and $\$ 11,170$ respectively. Avoided replacement energy costs continue to escalate over the life of the equipment as the Unit outage duration in the event of an un-planned equipment failure continues to escalate.
$\square$

## Test 3

Test 4

Analytical panel and analyzer replacement

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	9,101	$(343,220)$	13,729	329,491	$(334,119)$	1,337	$(332,782)$	1	$(332,782)$	$(332,782)$
2012	-	11,170	-	26,359	303,132	11,170	4,656	15,826	1	14,835	$(317,947)$
2013	-	14,290	-	24,251	278,881	14,290	3,088	17,378	1	15,270	$(302,677)$
2014	-	17,973	-	22,311	256,571	17,973	1,300	19,274	1	15,875	$(286,802)$
2015	-	22,333	-	20,526	236,045	22,333	(560)	21,773	1	16,810	$(269,992)$
2016	-	33,659	-	18,884	217,162	33,659	$(4,581)$	29,079	1	21,046	$(248,946)$
2017	-	40,993	-	17,373	199,789	40,993	$(7,322)$	33,671	1	22,843	$(226,103)$
2018	-	49,750	-	15,983	183,806	49,750	$(10,468)$	39,282	1	24,981	$(201,121)$
2019	-	60,222	-	14,704	169,101	60,222	$(14,110)$	46,111	1	27,488	$(173,633)$
2020	-	72,761	-	13,528	155,573	72,761	$(18,362)$	54,399	1	30,398	$(143,236)$
2021	-	87,794	-	12,446	143,127	87,794	$(23,358)$	64,436	1	33,752	$(109,484)$
2022	-	105,833	-	11,450	131,677	105,833	$(29,259)$	76,574	0	37,598	$(71,885)$
2023	-	127,495	-	10,534	121,143	127,495	$(36,258)$	91,237	0	41,993	$(29,892)$
2024	-	153,523	-	9,691	111,451	153,523	$(44,588)$	108,935	0	46,999	17,107
2025	-	184,812	-	8,916	102,535	184,812	$(54,528)$	130,284	0	52,690	69,797
2026	-	222,437	-	8,203	94,332	222,437	$(66,413)$	156,024	0	59,149	128,946
2027	-	267,691	-	7,547	86,786	267,691	$(80,645)$	187,047	0	66,469	195,415
2028	-	322,129	-	6,943	79,843	322,129	$(97,708)$	224,421	0	74,757	270,172
2029	-	387,614	-	6,387	73,456	387,614	$(118,180)$	269,434	0	84,131	354,304
2030	-	466,388	-	5,876	67,579	466,388	$(142,758)$	323,629	0	94,726	449,030
2031	-	-	-	5,406	62,173	-	1,676	1,676	0	460	449,490
2032	-	-	-	4,974	57,199	-	1,542	1,542	0	397	449,886
2033	-	-	-	4,576	52,623	-	1,419	1,419	0	342	450,228
2034	-	-	-	4,210	48,413	-	1,305	1,305	0	295	450,523
2035	-	-	-	3,873	44,540	-	1,201	1,201	0	254	450,777
2036	-	-	-	3,563	40,977	-	1,105	1,105	0	219	450,997
2037	-	-	-	3,278	37,699	-	1,016	1,016	0	189	451,186
2038	-	-	-	3,016	34,683	-	935	935	0	163	451,349
2039	-	-	-	2,775	31,908	-	860	860	0	141	451,490
2040	-	-	-	2,553	29,356	-	791	791	0	121	451,611
2041	-	-	-	2,348	27,007	-	728	728	0	105	451,716
2042	-	-	-	2,161	24,847	-	670	670	0	90	451,806
2043	-	-	-	1,988	22,859	-	616	616	0	78	451,884
2044	-	-	-	1,829	21,030	-	567	567	0	67	451,951
2045	-	-	-	1,682	19,348	-	522	522	0	58	452,009
2046	-	-	-	1,548	17,800	-	480	480	0	50	452,059
2047	-	-	-	1,424	16,376	-	441	441	0	43	452,102
2048	-	-	-	1,310	15,066	-	406	406	0	37	452,139
2049	-	-	-	1,205	13,861	-	374	374	0	32	452,171
2050	-			1,109	12,752	-	423	423	0	34	452,205
Total	-	2,657,967	$(343,220)$	330,468	3,971,995	2,314,747	$(721,640)$	1,593,107	15	452,205	7,797,849



## CI Number: 40319

Title: TRE - HVAC Replacements (2011)

Start Date:	$2011 / 03$
Final Cost Date:	$2011 / 09$
Function:	Generation
Forecast Amount:	$\$ 294,925$

## DESCRIPTION:

The Trenton Generating Station has a variety of heating, ventilating and air conditioning (HVAC) equipment. This includes condensing units, an automated control system, air-handlers, exhaust fans, rooftop package units, and water-cooled packaged units. This equipment provides heating, ventilation and air conditioning to offices, control rooms, and critical plant equipment. The focus of this HVAC replacement project will be to replace the condensing unit and make-up air unit for the Control Room, the evaporator air handler for Motor Control Centre (MCC) Room \#6 and Relay Room \#6, the evaporator air handler for MCC Room \#5, and the water-cooled package unit for Relay Room \#5. HVAC is necessary in order to provide an acceptable operating environment for temperature sensitive components utilized within the Control Room, MCC Room and Relay Room.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Equipment Replacement

## Why do this project?

Replacing the HVAC units will ensure adequate cooling is available for the control room, MCC rooms, and relay rooms and support reliable operation of the Trenton Generating Station.

## Why do this project now?

Replacement of the units is required now based on Original Equipment Manufacturer (OEM) and service provider recommendations.

Why do this project this way?
The most practical and cost effective solutions to ensure continuing HVAC reliability in these areas is to replace the existing HVAC units. Replacing the units prior to an unplanned failure will avoid more costly repairs and replacements.

Parent CI Number	$:$
Cost Centre	$: 341$

## Approved Date

Cost Centre : 341

- 341-Trenton Admin./Common Capital

Budget Version
2011 ACE Plan

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		6,663	0	6,663
095		095-Thermal \& Hydro Contracts AO			0	
095		095-Thermal Regular Labour AO		5,282	0	5,282
001	003	001 - THERMAL Regular Labour	003 - SGP - Bldg.,Struct.Grnd.	22,000	0	22,000
012	003	012 - Materials	003 - SGP - Bldg.,Struct.Grnd.	180,000	0	180,000
013	003	013 - POWER PRODUCTION Contracts	003 - SGP - Bldg.,Struct.Grnd.		0	
028	087	028 - Consulting	087 Field Super.\& Ops.		0	
			Total Cost:	294,925	0	294,925
			Original Cost:			

## TRE - HVAC Replacements (2011) <br> Summary of Alternatives

Budget Year :	2011
Division :	Power Production
Department :	Trenton Generating Station
Originator:	

Date :
CI Number:
Project No. :

22-Dec-10
40319


	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Replace HVAC Equipment	6.68\%	198,668	1	85.94\%	2.9 years
B	Test 2	6.68\%	0	2	\#NUM!	0.0 years
C	Test 3	6.68\%	0	2	\#NUM!	0.0 years
D	Test 4	6.68\%	0	2	\#NUM!	0.0 years

## Recommendation :

Replace HVAC equipment

## Notes/Comments :

## Replace HVAC equipment

Justification of this project is based on a capital cost of $\$ 294,925$ and an increasing probability of equipment failure if replacement is not completed in 2011. Capacity loss is estimated at 160 MW for 48 hours once per year for each Unit. Total avoided replacement energy costs for 2011 and 2012 are $\$ 225,024$ and $\$ 229,524$ respectively.

## Test 2

## Test 3

Test 4	

TRE - HVAC Replacements (2011) HVAC Replacement Cost vs Replacement Energy Costs



# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40243

Title: LIN 3 Battery and Charger Replacement
Start Date: 2011/02

Final Cost Date: 2011/10
Function: Generation
Forecast Amount: \$283,106

## DESCRIPTION:

The purpose of this project is to replace obsolete and unreliable batteries and chargers that are part of the Unit \#3 emergency back-up power supply system. The emergency batteries are employed in the event of a power outage, providing back-up power to emergency auxiliary devices (lube oil and seal water DC pump motors, emergency lighting, 120V AC to DCS and other controls). The project involves replacing all existing batteries ( 60 cell station) with new batteries and two new chargers.

Summary of Related CI's +/- 2 years:
2010 CI 36602 LIN1 Battery and Charger Replacement \$286,231

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Equipment Replacement
Why do this project?
The batteries are original equipment (over 28 years old) and have reached the end of their useful life. The batteries are showing signs of degradation (case bulging) and three cells have been removed after failing capacity tests. Replacing the batteries and chargers will ensure a reliable back-up power system is available.

Why do this project now?
The batteries and chargers are obsolete and must be replaced now.
Why do this project this way?
Replacing the existing components is the only option as this equipment is obsolete.


## CI 40243 - LIN3 Battery \& Charger Replacement

The following is a breakdown of costs associated with the LIN3 Battery Charger Replacement

Administrative Overheads and Interest Labour Materials
Contracts
Total


The materials estimate of $\$$ is based on the attached vendor quotes and detailed project estimate.

The labour estimate is mostly regular labour per the attached account breakdown. The estimate is based on the hourly rates per the collective agreement and the hours required to complete the project. The number of hours required to complete this project is based on CI 36602 - LIN1 Battery \& Charger Replacement, which was completed in 2010.

Station:	LINGAN GENERATING STATION
CI Number:	40243
Project:	LIN -BATTERY AND CHARGERS REPLACEMENT
Project	Replace obsolete chargers and station batteries for unit 3.
Description:	Lingan labor to install.


Item	Description	Rate (\$/hr)	Qty	Cost Est	Totals
1	Regular Plant Labour				
	Plant Engineering			\$2,000	
	Supervision			\$1,080	
	Mech Trades	\$37	50	\$1,850	
	Electrical Trades	\$40	360	\$14,400	
	Sub-Total Plant Resources				\$19,330
2	Term Labor				
	Utility Trades	\$27	37	\$999	
	Sub-Total Term Resources				\$999
3	Contracting				
	Commissioning Services hoisting/removal of Batteries and Chargers		$\begin{aligned} & 1 \\ & 1 \end{aligned}$		
	Sub-Total Contracting				
4	Material				
	Chargers 2 ea Saft 300A		2		
	battery packs 60 cells x 900Ahr		2		
	battery racks for 60 cell station		2		
	Misc. wiring and connectors		1		
	Sub-Total Materials				
5	Interest \& A/O Charges				
	Interest Capitalized/Construction Overhead	\$8,625			
		$\begin{gathered} \hline \$ 4,641 \\ \$ 239 \end{gathered}$			
	Sub-Total Interest \& A/O Charges				
	Total Project Estimate				\$283,104

Estimate Assumptions:
based on scope of previous project completed in 2010. All units have similar configuration.
Quotes for 2010 battery and charger project as follows:

Pages 573-576 have been removed due to confidentiality.


## Recommendation :

## Replace Batteries

## Notes/Comments :

## Replace Batteries

Justification of this project is based on a capital cost of $\$ 283,105$ and a low probability of failure of (estimated at 1\%). Capacity loss in the event of a failure would be 154MW for 540 hours. Total avoided costs for 2011 and 2012 are $\$ 142,578$ and $\$ 111,827$ respectively.

## Test 2

## Test 3

## Test 4

Replace Batteries

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	142,578	$(283,105)$	11,324	271,781	$(140,527)$	$(42,795)$	$(183,322)$	1.000	$(183,322)$	$(183,322)$
2012	-	111,828	-	21,742	250,038	111,828	$(27,970)$	83,858	0.937	78,607	$(104,715)$
2013	-	112,564	-	20,003	230,035	112,564	$(28,694)$	83,870	0.879	73,696	$(31,019)$
2014	-	113,308	-	18,403	211,632	113,308	$(29,457)$	83,851	0.824	69,065	38,046
2015	-	114,059	-	16,931	194,702	114,059	$(30,110)$	83,949	0.772	64,816	102,862
2016	-	114,818	-	15,576	179,126	114,818	$(30,765)$	84,053	0.724	60,833	163,695
2017	-	115,584	-	14,330	164,796	115,584	$(31,389)$	84,195	0.678	57,120	220,815
2018	-	116,358	-	13,184	151,612	116,358	$(31,984)$	84,374	0.636	53,657	274,472
2019	-	117,139	-	12,129	139,483	117,139	$(32,553)$	84,586	0.596	50,424	324,896
2020	-	117,929	-	11,159	128,324	117,929	$(33,099)$	84,830	0.559	47,403	372,298
2021	-	118,726	-	10,266	118,058	118,726	$(33,623)$	85,103	0.524	44,578	416,876
2022	-	119,532	-	9,445	108,614	119,532	$(34,127)$	85,405	0.491	41,934	458,810
2023	-	120,346	-	8,689	99,925	120,346	$(34,614)$	85,732	0.460	39,459	498,269
2024	-	121,168	-	7,994	91,931	121,168	$(35,084)$	86,084	0.431	37,140	535,409
2025	-	121,999	-	7,354	84,576	121,999	$(35,540)$	86,459	0.404	34,966	570,375
2026	-	122,838	-	6,766	77,810	122,838	$(35,982)$	86,856	0.379	32,927	603,303
2027	-	123,687	-	6,225	71,585	123,687	$(36,413)$	87,273	0.355	31,014	634,316
2028	-	124,544	-	5,727	65,859	124,544	$(36,833)$	87,711	0.333	29,217	663,534
2029	-	125,410	-	5,269	60,590	125,410	$(37,244)$	88,166	0.312	27,530	691,064
2030	-	126,286	-	4,847	55,743	126,286	$(37,646)$	88,640	0.293	25,945	717,009
2031	-	-	-	4,459	51,283		1,382	1,382	0.274	379	717,388
2032	-	-	-	4,103	47,181	-	1,272	1,272	0.257	327	717,715
2033	-	-	-	3,774	43,406	-	1,170	1,170	0.241	282	717,997
2034	-	-	-	3,472	39,934	-	1,076	1,076	0.226	243	718,240
2035	-	-	-	3,195	36,739	-	990	990	0.212	210	718,450
2036	-	-	-	2,939	33,800	-	911	911	0.199	181	718,631
2037	-	-	-	2,704	31,096	-	838	838	0.186	156	718,787
2038	-	-	-	2,488	28,608	-	771	771	0.174	135	718,922
2039	-	-	-	2,289	26,320	-	709	709	0.164	116	719,038
2040	-	-	-	2,106	24,214	-	653	653	0.153	100	719,138
2041	-	-	-	1,937	22,277	-	601	601	0.144	86	719,224
2042	-	-	-	1,782	20,495	-	552	552	0.135	74	719,299
2043	-	-	-	1,640	18,855	-	508	508	0.126	64	719,363
2044	-	-	-	1,508	17,347	-	468	468	0.118	55	719,418
2045	-	-	-	1,388	15,959	-	430	430	0.111	48	719,466
2046	-	-	-	1,277	14,682	-	396	396	0.104	41	719,507
2047	-	-	-	1,175	13,508	-	364	364	0.098	36	719,543
2048	-	-	-	1,081	12,427	-	335	335	0.091	31	719,573
2049	-	-	-	994	11,433	-	308	308	0.086	26	719,600
2050	-	-	-	915	10,518	-	349	349	0.080	28	719,628
Total	-	2,400,698	$(283,105)$	272,587	3,276,300	2,117,593	$(661,835)$	1,455,758	14.768	719,628	21,345,920



# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 39783

Title: TUC - Security System Upgrade
Start Date: 2011/03
Final Cost Date: 2011/12
Function: Generation
Forecast Amount: \$281,247

## DESCRIPTION:

This project includes upgrades to the video surveillance security system, access control at the plant's main gate, north and south yard security perimeter lighting and addition of a closed circuit television with intrusion detection to ensure compliance with Federal Emergency Management Agency (FEMA) and American Society for Industrial Security (ASIS). The industry standards are used throughout North America for infrastructure safety and security.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013.

## JUSTIFICATION:

Justification Criteria: Health \& Safety

## Why do this project?

The risk assessment completed for the Tufts Cove Generating Station indicated that these security upgrades are required to ensure compliance with accepted industry standards.

Why do this project now?
This project must be completed now to mitigate the risk of security breach at the Tuft's Cove Generating Station.

Why do this project this way?
Completing this project will ensure compliance with industry standards.

CI Number : 39783

- TUC - Security System Upgrade

Project Number
Parent CI Number : -
Cost Centre : 311

- 311-Tufts Cove Admin./Common Capita


## Approved Date

Budget Version 2011 ACE Plan

Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
001		001 - THERMAL Regular Labour			20,000	0	20,000
013		013 - POWER PRODUCTION Contracts				0	
028		028 - Consulting				0	
094		094 - Interest Capitalized			6,285	0	6,285
095		095-Thermal Regular Labour AO			4,802	0	4,802
095		095-Thermal \& Hydro Contracts AO				0	
				Total Cost:	281,247	0	281,247

Original Cost:

## CI 39783 - TUC Security System Upgrade

The following is a breakdown of costs associated with Security System Upgrade:
Administrative Overheads and Interest
Labour
Contracts
Consulting
Total

The contracts estimate of \$ is based on the vendor quotes attached and NSPI engineering staff experience.

The breakdown of the contracts estimate is as follows:
CCTV upgrades:
Access control / main gate upgrades:

- Base scope of work per attached quote:
- Electrical modifications and other modifications:

North Yard Lighting Upgrades: $\square$
South Yard Lighting Upgrades:

Pages 583-598 have been removed due to confidentiality.

## CI Number: 39944

Title: TRE6 - Fly Ash Line Replacement

Start Date:	$2011 / 05$
Final Cost Date:	$2011 / 09$
Function:	Generation
Forecast Amount:	$\$ 259,172$

## DESCRIPTION:

Trenton Unit \#6 utilizes a Flakt Depac fly ash conveying system to transport ash from the precipitator hoppers to the silo. This system was installed as part of the original equipment when Unit \#6 was constructed in the early 1990's. One of the key elements of the fly ash transport system is the piping from the precipitator hoppers to the silo. This pipe system is comprised of 2 inch and 3 inch diameter carbon steel pipes. Over the past few years, the fly ash has worn the pipes to the point where line leaks are frequent.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

## Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

## Why do this project?

This project must be completed to minimize the leaks of fly ash at the plant, minimize maintenance costs and support unit reliability by not having to shut down the ash system for repair which causes the ash system to get back logged.

## Why do this project now?

This project must be completed now to mitigate the risk of leaks, ensure Unit reliability and environmental performance is maintained.

## Why do this project this way?

The original ash transport piping has provided almost 20 years of operations and due to pipe wall thickness wastage has reached the point where replacement is the most cost effective approach.

- TRE6 - Fly Ash Line Replacement

Parent CI Number	$:$
Cost Centre	$: 345$

## Approved Date



## TRE6 - Fly Ash Line Replacement Summary of Alternatives

Budget Year :   Division :   Department :   Originator :	2011
	Power Production
	Trenton Generating Station

Date :
CI Number:
Project No. :

22-Dec-10
39944


	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Replace Flyash Line	6.68\%	379,305	1	28.59\%	6.1 years
B	Test 2	6.68\%	0	2	\#NUM!	0.0 years
C	Test 3	6.68\%	0	2	\#NUM!	0.0 years
D	Test 4	6.68\%	0	2	\#NUM!	0.0 years

## Recommendation :

Replace flyash line

## Notes/Comments :

## Cost of Replacements vs Replacement Energy Costs

Justification of this project is based on a capital cost of $\$ 259,172$, an avoided capacity loss of 30MW for an unplanned failure of 12 hour duration and avoided replacement energy costs for 2011 and 2012 of $\$ 73,800$ and $\$ 75,276$ respectively.

## Test 2

## Test 3

## Test 4

TRE6 - Fly Ash Line Replacement

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2011	-	73,800	$(259,172)$	10,367	248,805	$(185,372)$	$(20,742)$	$(206,114)$	1.000	$(206,114)$	$(206,114)$
2012	-	75,276	-	19,904	228,901	75,276	$(17,205)$	58,071	0.937	54,435	$(151,679)$
2013	-	76,782	-	18,312	210,589	76,782	$(18,126)$	58,656	0.879	51,540	$(100,138)$
2014	-	78,317	-	16,847	193,742	78,317	$(19,089)$	59,228	0.824	48,784	$(51,354)$
2015	-	79,883	-	15,499	178,242	79,883	$(19,959)$	59,924	0.772	46,267	$(5,087)$
2016	-	81,481	-	14,259	163,983	81,481	$(20,839)$	60,642	0.724	43,890	38,802
2017	-	83,111	-	13,119	150,864	83,111	$(21,698)$	61,413	0.678	41,664	80,467
2018	-	84,773	-	12,069	138,795	84,773	$(22,538)$	62,235	0.636	39,578	120,044
2019	-	86,468	-	11,104	127,691	86,468	$(23,363)$	63,105	0.596	37,619	157,663
2020	-	88,198	-	10,215	117,476	88,198	$(24,175)$	64,023	0.559	35,776	193,439
2021	-	89,962	-	9,398	108,078	89,962	$(24,975)$	64,987	0.524	34,041	227,479
2022	-	91,761	-	8,646	99,432	91,761	$(25,766)$	65,995	0.491	32,404	259,884
2023	-	93,596	-	7,955	91,477	93,596	$(26,549)$	67,047	0.460	30,859	290,743
2024	-	95,468	-	7,318	84,159	95,468	$(27,326)$	68,142	0.431	29,399	320,142
2025	-	97,378	-	6,733	77,426	97,378	$(28,100)$	69,278	0.404	28,018	348,160
2026	-	99,325	-	6,194	71,232	99,325	$(28,871)$	70,454	0.379	26,709	374,869
2027	-	-	-	5,699	65,534	-	1,767	1,767	0.355	628	375,497
2028	-	-	-	5,243	60,291	-	1,625	1,625	0.333	541	376,038
2029	-	-	-	4,823	55,468	-	1,495	1,495	0.312	467	376,505
2030	-	-	-	4,437	51,030	-	1,376	1,376	0.293	403	376,908
2031	-	-	-	4,082	46,948	-	1,266	1,266	0.274	347	377,255
2032	-	-	-	3,756	43,192	-	1,164	1,164	0.257	299	377,554
2033	-	-	-	3,455	39,737	-	1,071	1,071	0.241	258	377,812
2034	-	-	-	3,179	36,558	-	985	985	0.226	223	378,035
2035	-	-	-	2,925	33,633	-	907	907	0.212	192	378,227
2036	-	-	.	2,691	30,942	-	834	834	0.199	166	378,393
2037	-	-	-	2,475	28,467	-	767	767	0.186	143	378,536
2038	-	-	-	2,277	26,190	-	706	706	0.174	123	378,659
2039	-	-	-	2,095	24,095	-	650	650	0.164	106	378,765
2040	-	-	-	1,928	22,167	-	598	598	0.153	92	378,857
2041	-	-	-	1,773	20,394	-	550	550	0.144	79	378,936
2042	-	-	-	1,631	18,762	-	506	506	0.135	68	379,004
2043	-	-	-	1,501	17,261	-	465	465	0.126	59	379,063
2044	-	-	-	1,381	15,880	-	428	428	0.118	51	379,113
2045	-	-	-	1,270	14,610	-	394	394	0.111	44	379,157
2046	-	-	-	1,169	13,441	-	362	362	0.104	38	379,195
2047	-	-	.	1,075	12,366	-	333	333	0.098	33	379,227
2048	-	-	-	989	11,377	-	307	307	0.091	28	379,255
2049	-	-	-	910	10,466	-	282	282	0.086	24	379,279
2050	-	-	-	837	9,629	-	319	319	0.080	26	379,305
Total	-	1,375,579	$(259,172)$	249,543	2,999,330	1,116,407	$(350,162)$	766,245	14.768	379,305	10,975,894



## CI Number: 39943

Title: TRE6-6B CW Screen Refurbishment

Start Date:	$2011 / 02$
Final Cost Date:	$2011 / 04$
Function:	Generation
Forecast Amount:	$\$ 257,503$

## DESCRIPTION:

The Unit \#6 traveling water screens are an integral part of the intake cooling water (CW) system for the Trenton Generation Station. The screen system consists of two separate units, each of which consists of numerous framed screens that rotate through the CW intake. The main function of these units is to filter out the foreign material from the water as it is being extracted from the river. A failure of one or both of the screens would either allow foreign matter into the CW system or result in a blockage of the screen system and reduction of CW flow to the pumps.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

The CW screens are original equipment that have been in service since the commissioning of Unit \#6 in 1991. Normal wear has been experienced due to the effects of brackish water corrosion. Although the equipment has been adequately maintained since the CW screens were commissioned, inspections completed in 2010 indicated that a number of the components (screen baskets (excluding s/s mesh), carrier chain, pins bushings, bearings / seals and spray nozzles) need to be replaced.

## Why do this project now?

A number of the components (screen baskets excluding s/s mesh), carrier chain, pins bushings, bearings / seals, spray nozzles) have reached the end of their useful life and must be replaced. Completing the refurbishment in 2011 will mitigate the risk of unplanned equipment failure and ensure reliability of the Unit.

## Why do this project this way?

Refurbishment of the 6B screen in a planned manner is the most practical and cost effective solution.

- TRE6-6B CW Screen Refurbishment



## TRE6-6B CW Screen Refurbishment <br> Summary of Alternatives

Budget Year :   Division :	2011
	Power Production
Department :	Trenton Generating Station
Originator :	

Date :
CI Number:
Project No. :

22-Dec-10
39943


	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Refurbish 6B CW Screen	6.68\%	411,443	1	32.18\%	5.6 years
B	Test 2	6.68\%	0	2	\#NUM!	0.0 years
C	Test 3	6.68\%	0	2	\#NUM!	0.0 years
D	Test 4	6.68\%	0	2	\#NUM!	0.0 years

Recommendation :
Refurbish 6B CW Screen

## Notes/Comments :

## Refurbish 6B CW Screen

Justification for this project is based on a capital cost of $\$ 257,503$, an avoided capacity loss of 55MW for an un-planned failure of 36 hours (estimating two failures per year) and avoided replacement energy costs for 2011 and 2012 of $\$ 81,180$ and $\$ 82,803$ respectively.

## Test 2

## Test 3

## Test 4

TRE6-6B CW Screen Refurbishment



# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40210

Title: LIN Fall Protection

Start Date:	$2011 / 02$
Final Cost Date:	$2011 / 12$
Function:	Generation
Forecast Amount:	$\$ 254,544$

## DESCRIPTION:

The work associated with this project will repair "Hazard Class 3" Locations as identified in the CJ MacLellan Fall Protection Survey Report dated February 20, 2009. This report was filed with the Board on August 7, 2009.

Summary of related CI's +/- 2 years;
2009-36243 LIN-U\&U Fall Protection \$38,663
2010 - 38910 LIN Fall Protection \$239,260

## JUSTIFICATION:

Justification Criteria: Health \& Safety

## Why do this project?

This project will address Hazard Class 3 areas with identified potential fall hazards as per the CJ MacLellan Fall Protection Survey Report dated February 20, 2009. Class 1 and Class 2 hazards were addressed in 2009 and 2010 projects. This work is a continuation of the fall protection work undertaken in 2009 and 2010 to improve fall protection and ensure compliance with regulations.

## Why do this project now?

With the assistance of NSPI, an inspection for the Fall Protection Survey was completed by C.J. MacLellan and Associates. The survey included all areas of the facility that may be considered to have potential for fall issues. This work order includes the materials, labour, and contracts to address the Hazard Class 3 locations. The class 3 hazards are the last hazards that require action.

## Why do this project this way?

Upgrades are required to bring fall protection into compliance with the applicable codes and standards.


## CI 40210 - LIN Fall Protection

The following is a breakdown of costs associated with the LIN Fall Protection project:


The estimate for this project is based on the work completed under CI 38910 - Fall Protection, completed in 2010 and CI 36243 - U\&U Fall Protection, completed in 2009. The work to be completed under this project is very similar in nature to work completed under these previous projects.

Pages 612-700 have been removed due to confidentiality.

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 39940

Title: TRE5 - Bottom Ash Refurbishment
Start Date: 2011/05
Final Cost Date: 2011/10
Function: Generation
Forecast Amount: $\$ 254,370$

## DESCRIPTION:

An inspection report was commissioned in June 2010 on the bottom ash system for Unit \#5. Inspection results identified several deficiencies which must be addressed to maintain reliability of Unit \#5.

Scope of refurbishment will include bottom door cylinder replacement, replacement of return idlers and carrying idlers, chain and scraper replacements, and pneumatic box and cylinders replacements.

Summary of Related CI's +/- 2 years:
No other projects in 2009,2010,2011,2012 and 2013.

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Maintenance

## Why do this project?

This project must be completed to ensure long term reliability of the bottom ash system. Inspection has confirmed that several key components require prompt replacement in order to effectively refurbish the system.

## Why do this project now?

The project must be completed due to the condition of the bottom ash system components. Delaying this work will increase the likelihood of an unplanned outage to complete more costly repairs.

## Why do this project this way?

Replacing the components identified in the June 2010 inspection report is the most feasible option.

- TRE5 - Bottom Ash Refurbishment

Parent CI Number	$:$
Cost Centre	$: 340$

## Approved Date



## CI Number: 40223

Title: LIN-CW Screen Refurbishment
Start Date: 2011/01
Final Cost Date: 2011/12
Function: Generation
Forecast Amount: \$253,879

## DESCRIPTION:

This project will address the condition of the cooling water (CW) traveling screens and the associated sealing issues. The screens consist of bottom, top and intermediate sections. The bottom section includes the tail sprocket assembly and support structure. The top section is comprised of the drive sprocket assembly and the support structure. The intermediate section spans vertically between the bottom and top sections and supports the entire structure. The screens' intermediate sections and top sections require replacement, as they have corroded over time. These sections will be replaced with stainless steel components.

There are eight CW Screens installed in the Lingan pumphouse (two per unit). During periods of low seaweed loading, one of the two screens on each unit is taken out of service and refurbished. The plan is to refurbish two screens per year until all eight screens have been upgraded. Screens 1A and $3 B$ were completed in 2010. Screens 1B and 4A are planned for 2011.

Summary of Related CI's +/- 2 years
2010-37744 LIN CW Travelling Screen Refurbish \$255,014
2009-31546 LIN CW Travelling Screen Refurbish \$310,673

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Equipment Replacement

## Why do this project?

Eel-grass passing through degraded or non functioning traveling screen panels results in downstream fouling of strainers and increases the risk of unit de-rating or outages due to inadequate cooling capacity, particularly during the late summer and fall. The degree of fouling can also result in high mechanical loading on the screens and cooling water pumps. This high loading causes component failures at the screens and CW pumps. This increases the risk of Unit de-rating or outages due to the loss of cooling water.

## Why do this project now?

Completing this project will reduce occurrence of existing issues with the circulating water system during periods of heavy seaweed and debris. This will reduce the risk of unit de-ratings and subsequent associated replacement energy costs.

## Why do this project this way?

The screens operate in an aggressive sea water environment and have experienced normal corrosion and wear. The most cost effective solution is to replace the corroded and worn components as opposed to replacing the complete screen infrastructure. Primary components to be refurbished include the top drives (sprocket refurbishment, bearing replacement, shaft refurbishment, top boot replacement with stainless steel material), Intermediate Section (guides, supports and screen panels replacement), Lower Section (sprocket refurbishment, bearing replacement, shaft refurbishment, bottom boot replacement with stainless steel material).


## Original Cost:

## CI 40223 - LIN CW Screen Refurbishment

The following is a breakdown of costs associated with the LIN CW Screen Refurbishment
Administrative Overheads and Interest Labour Materials
Contracts
Total


The materials estimate of is based on the inventory costs of the materials required to complete the refurbishment. A detailed description of the materials required and inventory costs are attached.

The labour estimate of $\$ 81,080$ is mostly regular labour per the attached account breakdown and detailed project estimate. The estimate is based on the hourly rates per the collective agreement and the hours required to complete the project. The number of hours required is based on projects of similar scope completed in the recent past.

Station: LINGAN GENERATING STATION

CI Number: 40223

Project: LIN - CW Screen Refurbishment

Project
Description: Refurbish two (2) CW Screens.


## Primary Materials List and Cost

Inv Number	Inventory Description of Components	Cost Qty		Total	
	Top Section				
520608-6791	Take Up Bearing Assembly	1,900	1.00	1,900	
522981-0200	Shaft for Travelling Water Screen	2,149	1.00	2,149	
523290-2480	SPROCKET, GT HEAD FOR \#3241 CHAIN STAINLESS STEEL INSERTS,	1,420	1.00	1,420	
523290-3520	SPROCKET 52 TOOTH DRIVEN TRAVELING WATER SCREEN $1,1401.001140$ DRIVE SPROCKET 8 TOOTH FOR REXNORD TRAVELLING SCREEN-				
523290-1030	SHOP CODE 2/64	1,300	1.00	1,300	
523208-6002	Chain Cover - Bottom Half			-	
523225-0040	Chain - Chabelco	1130483		13,483	
523231-0010	TAKE-UP SEALING PLATE FOR CW SCREENS, 316SS, 11 GAUGE	875	1.00	875	
	Subtotal Screen Top				22,267
	Bottom Boot Section				
523208-0400	ASSY. BOOT SECTION BOTTOM TRAY C/W SCW SYSTEM SCREENS $\quad 7,5001.00$ 7,500				
	FOOT SPROCKETS, 304 STAINLESS STEEL FABRICATED POSITIVE				
	TRACKING STYLE WITH STOODY BUSHINGS FOR A 2 15/16" DIAMETER				
52329-01040	SHAFT SLEEVE.	3,600	1.00	3,600	
523225-2470	CHAIN CARRYING "CHABELCO" MATERIAL SPECIFICATION 304 SS.	5,250	1.00	5,250	
	Subtotal Bottom Boot				16,350
	Screen Panels				
523208-6900	BASKET ASSEMBLIES, DWG\# PD100342, 14 GUAGE 316SS WIRE MESH PANELS WITH 5/16" SQ OPENINGS \& 316SS ASS'Y HARDWARE	967	20.00	19,340	
523254-1000	LIP UPPER, SCREEN BASKET ASSEMBLY 10" X 24" FOR WATER SCREENS, FLAT MESH DESIGN COATED WITH RED OXIDE PRIMER.	132	12.00	1,584	
523254-1010	LIP LOWER SCREEN BASKET ASSEMBLY 10" $\times 24$ " FOR TRAVEL	132	12.00	1,584	
523254-1010	SCREENS, FLAT MESH DESIGN COATED WITH RED OXIDE PRIMER.		12.00	1,584	
523220-6900	CLOTH, WIRE SCREEN CLOTH 10'-316 S/S\#14GA(080 DIA) 5/16" SQ.	223	10.00	2,225	
	subtotal screen panels				24,733
	Subtotal Materials for One (1) Unit				63,350

Refurbish CW Screens


## Summary of Alternatives

Budget Year:	2011
Division :	Generation Services
Department :	Lingan Generating Station
Originator:	

Date :
CI Number:
Project No. :

22-Dec-10
40223


	Alternative	After Tax   WACC	PV of EVA / NPV	Rank	
A	Refurbish Screens	$6.68 \%$	421,109	1	
B	Test 2	$6.68 \%$	0	2	
C	Test 3	$6.68 \%$	0	2	Disc Pay
D	Test 4	$6.68 \%$	0	2	$46.06 \%$
4.6 years					
\#NUM!	0.0 years				
\#NUM!	0.0 years				
\#NUM!	0.0 years				

## Recommendation :

## Refurbish Screens

## Notes/Comments :

## Refurbish Screens

Justification of this project is based on a capital cost of $\$ 253,878$ and an increasing risk of failure over the life of the asset if refurbishment is not completed in 2011. Capacity loss in the event of a failure would be 60MW for 48 hours. Total avoided costs for 2011 and 2012 are: $\$ 88,477$ and $\$ 100,681$ respectively.

## Test 2

## Test 3

## Test 4

Refurbish CW Screens



โำ
込 N్ No



## Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

## CI Number: 39945

Title: TRE - Asbestos Abatement 2011
Start Date: 2011/03
Final Cost Date: 2011/11
Function: Generation
Forecast Amount: \$250,928

## DESCRIPTION:

Asbestos insulation is being removed from the Trenton Generating Station as part of a multi-year plan. This project continues the removal of asbestos-contaminated insulation materials that may become exposed through regular operation and maintenance activities and equipment vibration (e.g. pipe insulation).

With no planned Unit outages in 2011, the focus of this project will be on areas which can be isolated during normal plant operation. This will include building heating systems that are comprised of steam and condensate piping with asbestos-containing insulation. Some of the auxiliary steam piping systems will also be addressed. The scope of work includes scaffolding to access the piping, installation of temporary enclosures, removal and disposal of asbestos-contaminated insulation and re-insulation of the piping with asbestos-free insulation.

Summary of related CI's +/- 2 years.
2009-30826 TRE5 Asbestos Program \$115,248
2010 - 34502 TRE5 Asbestos Abatement \$242,000

## JUSTIFICATION:

Justification Criteria: Health \& Safety

## Why do this project?

Removing asbestos insulation reduces the risk of asbestos particles becoming air-borne where encapsulating specific areas is no longer viable for sustained protection.

## Why do this project now?

The removal of asbestos-contaminated insulation is being completed in a staged program. The areas to be addressed in 2011 are in accordance with the plant's asbestos work plan and inventory. The work plan for future years will be updated under this project.

## Why do this project this way?

The removal of the asbestos contaminated material is based on accepted industry standards. Encapsulating is used to seal asbestos where practical, removal is then planned to reduce the level of asbestos in a controlled manner in the operating plant.

- TRE - Asbestos Abatement 2011



## CI Number: 40228

Title: LIN Unit 3 \& 4 Boiler House Intake Louvers
Start Date: 2011/04
Final Cost Date: 2011/08
Function: Generation
Forecast Amount: \$250,571

## DESCRIPTION:

There are 14 louver sets that run the length of the west side wall of the plant to admit air into the boiler house and to supply air to the forced draft fans located in the building. The louvers have degraded and are no longer functional. The louvers are installed in banks of three with three louvers per set. The louvers for Unit \#1 and Unit \# 2 (seven locations) were replaced in 2010. This project includes the replacement of the intake louvers for Unit \#3 and Unit \#4 (seven locations).

Summary of related CI's +/- 2 years.
2010-28898 LIN- Replace Boiler House Intake Louvers - \$231,210

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Buildings

## Why do this project?

The Unit \#3 and Unit \#4 louvers are no longer functional and have had sections fall out during periods of high winds. The flashing in the louvers has deteriorated resulting in water leaking inside the wall. The system requires replacement with louvers that will withstand wind load conditions and function remotely.

## Why do this project now?

Due to the condition of the louvers and surrounding flashing, replacement is now required. Completing this project now will mitigate the potential of future safety risks under high wind conditions.

## Why do this project this way?

Replacing the existing louvers specified for the application and with ground level actuator control is the most practical solution. Repair of the existing louvers is not possible due to degraded metal housings and deteriorated mechanisms.


## CI 40228 - LIN Unit 3 \& 4 Boiler House Intake Louvers

The following is a breakdown of costs associated with the LIN Unit 3 \& 4 Boiler House Intake Louvers

Administrative Overheads and Interest Labour
Materials
Contracts
Consulting
Total

The materials estimate of $\$$ is based on the attached vendor quote.
The contracts estimate of $\$$ is based on the attached bid summary and detailed project estimate.

The labour estimate is mostly regular labour per the attached account breakdown and detailed project estimate. The labour estimate is based on the hourly rates per the collective agreement and the hours required to complete the project.

Station: LINGAN GENERATING STATION
CI Number:
40228
LIN- REPLACE WEST BOILER HOUSE INTAKE
Project:

Project
Description:
Replacement of intake louvers. Includes staging built for access and electrical tie for remote damper control.


Pages 717-718 have been removed due to confidentiality.

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 39937

Title: TRE - Fall Protection (Phase 3)
Start Date: 2011/03
Final Cost Date: 2011/11
Function: Generation
Forecast Amount: \$250,242

## DESCRIPTION:

The work associated with this project will repair "Hazard Class 3" locations as identified in the Fall Protection Survey Report dated February 20, 2009. This report was filed with the Board on August 7, 2009.

Summary of related CI's +/- 2 years:
2009-36242 TRE - Fall Protection (Phase 1) \$66,162
2010-38894 TRE - Fall Protection (Phase 2) \$132,922

## JUSTIFICATION:

Justification Criteria: Health \& Safety

## Why do this project?

This project will address Hazard Class 3 areas with identified potential fall hazards as per CJ MacLellan Fall Protection Survey Report dated February 20, 2009. This work is a continuation of the fall protection work undertaken in 2009 and 2010 to improve fall protection and ensure compliance with regulations.

## Why do this project now?

With the assistance of NSPI, an inspection for the Fall Protection Survey was completed by CJ MacLellan and Associates. The survey included all areas of the facility that may be considered to have potential for fall issues. This work order includes the materials, labour, and contracts to address the Hazard Class 3 locations.

Why do this project this way?
Upgrades are required to bring fall protection into compliance with the applicable codes and standards.

Parent CI Number			- 341-Trenton Admin./Common Capital		Approved Date	
	Cost	entre : 341			Budget Version	2011 ACE Plan
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		5,095	0	5,095
095		095-Thermal Term Labour AO		5,294	0	5,294
095		095-Thermal Regular Labour AO		18,529	0	18,529
095		095-Thermal Overtime Labour AO		1,324	0	1,324
001	023	001 - THERMAL Regular Labour	023 - SGP - Power Equip.-Station S	60,000	0	60,000
002	023	002 - THERMAL Overtime Labour	023 - SGP - Power Equip.-Station S	10,000	0	10,000
004	023	004 - THERMAL Term Labour	023 - SGP - Power Equip.-Station S	20,000	0	20,000
012	023	012 - Materials	023 - SGP - Power Equip.-Station S		0	
016	023	016 - Tools \& Equipment	023 - SGP - Power Equip.-Station S	5,000	0	5,000
033	023	033 - Rental and Maintenance of	023 - SGP - Power Equip.-Station S	5,000	0	5,000
028	085	028-Consulting	085 Design		0	
001	087	001 - THERMAL Regular Labour	087 Field Super.\& Ops.	10,000	0	10,000
028	087	028 - Consulting	087 Field Super.\& Ops.		0	
			Total Cost: Original Cost:	250,242	0	250,242

## CI 39937 - TRE Fall Protection (Phase 3)

The following is a breakdown of costs associated with the LLN Fall Protection project:
Administrative Overheads and Interest $\$ 30,242$
Labour
Materials
Consulting
Other
\$100,000

Total
\$10,000
\$250,242

The estimate for this project is based on the work completed under CI 38894 -Fall Protection, completed in 2010 and CI 36242 -Fall Protection, completed in 2009. The work to be completed under this project is very similar in nature to work completed under these previous projects.

Pages 722-800 have been removed due to confidentiality.

## CI Number: 40363

Title: LIN3 High Voltage Bushing Refurbishment
Start Date: 2011/01
Final Cost Date: 2012/02
Function: Generation
Forecast Amount: \$504,168

## DESCRIPTION:

High voltage bushings are installed on the three phases of the generator primary electrical connections to seal hydrogen gas in the generator. Each phase requires two bushings for phase connections. As a result of hydrogen leakage observed around the bushings on Unit \#1 and Unit \#2, Unit \#2 bushings were replaced in 2009 under CI 33662 and Unit \#1 bushings were replaced in 2010 under CI 38946. Similar to the work previously completed on Unit \#1 and Unit \#2, the scope of this project is to refurbish and replace the bushings on Unit \#3 to reduce the risk of a hydrogen leaks and an unplanned generator outage. New bushings were installed in Unit \#2 and the existing bushings from Unit \#2 were refurbished and installed in Unit \#1.

Summary of Related CI's +/- 2 years
2009 - CI 33662 Lin 2 Replace HV Bushings \$530,311
2010 - CI 38946 Lin1 Replace HV Bushings \$605,671

## JUSTIFICATION:

Justification Criteria: Thermal
Sub Criteria: Equipment Replacement

## Why do this project?

Lingan operational experience on Units $1 \& 2$ indicate there is a risk of hydrogen leaks occurring around the generator bushings and based on the Original Equipment Manufacturer (OEM) recommendations, refurbishment and replacement of the generator bushings and o-ring gaskets is required to ensure integrity of the bushings.

Why do this project now?
The planned Unit \#3 outage in 2011 is the next available opportunity to complete this work. Completing this project in 2011 will mitigate the risk of unplanned generator failures.

## Why do this project this way?

Replacing the original installed generator bushings and o-ring gaskets with refurbished bushings and new seal components is the most cost effective approach of ensuring long-term reliability of the generator.


## CI 40363 - LIN3 High Voltage Bushing Refurbishment

The following is a breakdown of costs associated with the LIN3 High Voltage Bushing Refurbishment:

Administrative Overheads and Interest Labour
Materials
Contracts
Other
Total


The contracts estimate of $\$$ is based on the attached vendor quotes and detailed project estimate.

The labour estimate of $\$ 90,110$ is mostly regular labour per the attached account breakdown and detailed project estimate. The estimate is based on the hourly rates per the collective agreement and the hours required to complete the project. The number of hours required is based on projects of similar scope completed in the recent past.

The materials estimate of $\$$ is based on the attached vendor quotes and detailed project estimate.

Station:	LINGAN GENERATING STATION
CI Number:	40363
Project:	Unit 3 High Voltage Bushing Replacement
Project	Replace HVB on U3 Generator. Scope is similar to   Unit 1 bushing replacement - refurbished bushings   Description:   used. Include contigency for standoff damage per   Unit 1 experience



Materials to be ordered in year 1 , ready for exchange in year 2


Pages 805-821 have been removed due to confidentiality.

## Transmission

## Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan

## 3 TRANSMISSION

(Millions of Dollars)

### 3.1 Five Year Plan and Highlights



- The focus for Transmission capital in 2011 is growth in customer base and customer reliability.
- Year 2011 transmission capital is comprised of the following:
o $\quad \$ 30.4 \mathrm{M}$ New items with total spend greater than $\$ 250 \mathrm{~K}$ seeking ACE approval
o $\quad \$ 6.8 \mathrm{M}$ New items with total spend greater than $\$ 250 \mathrm{~K}$ for individual approval
o $\quad \$ 0.0 \mathrm{M}$ New items with total spend less than $\$ 250 \mathrm{~K}$
o $\$ 20.8 \mathrm{M}$ Carryover Spending
o \$10.9M Routine Capital Spending


## Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan

### 3.2 Transmission - Carryover Spending

Project Number	CINumber	Project Title	Start Date	Final Date	Previous Expenditure	2011 Budget	Subsequent Spending	Total Estimate
T650	38732	1H Water St Replace 138 kV GIS	2010/04	2011/12	1,349,136	7,021,904	-	8,371,040
*	38819	51V Tremont Circuit Breaker \& Bus	2010/08	2011/12	1,522,583	5,929,928	-	7,452,511
*	33525	Canaan Rd 43V to Tremont 51V Line	2010/08	2011/07	6,188,759	1,827,676	-	8,016,435
*	34622	Upgrade L-8002	2010/09	2011/12	1,022,592	1,200,047		2,222,639
*	11004	Canaan Rd Circuit Breaker Additions	2010/08	2011/03	855,850	1,134,781	-	1,990,631
T639	33624	Spare Generator Transformer	2010/06	2012/05	9,394	1,045,147	3,296,023	4,350,564
*	40425	Kempt Road Transformer	2010/10	2011/08	280,115	813,584	-	1,093,699
**	40185	104H-T61 Transformer Refurbishment	2010/12	2011/12	224,709	721,966	-	946,675
*	25391	25 kV Bus Keltic Dr	2010/04	2011/07	296,398	375,445	-	671,843
*	39628	Digby Wind Project Interconnect	2010/05	2011/02	2,986,580	283,480	-	3,270,060
*	38266	2010 Protection Upgrades	2010/08	2011/01	61,333	251,998	-	313,331
T549	28478	L6033 \& L6035 Tower Footing Restora	2007/03	2011/12	11,234	187,476	-	198,710
		Total Transmission			\$14,808,683	\$20,793,432	\$3,296,023	\$38,898,138

Note 1: Project Listings are as of December 2010.
Note 2: * Pending UARB Approval
Note 3: **Will be submitted as a U\&U in 2010 Q4 Package.

### 3.3 Transmission - New Item Spending

Tab\#	CI\#	Project Title	2011 Budget	Project Total
T1	40233	2011 Protection Upgrades TUC	$\$ 3,928,932$	$\$ 3,928,932$
T2	40287	Substation Recloser Replacement	$3,764,921$	$3,764,921$
T3	40327	Glen Dhu 138 kV Substation	$3,200,000$	$3,200,000$
T4	40322	New Prospect Road Substation	$3,068,581$	$3,068,581$
T5	40281	2011 Transmission Line Insulator Replacement	$3,018,100$	$3,018,100$
T6	40280	2011 Transmission Switch \& Breaker Upgrades	$2,866,718$	$2,866,718$
T7	40288	2011 Substation PCB Equipment Removal	$2,510,193$	$2,510,193$
T8	40260	L-7012 Beaver Narrows Crossing Replacement	$1,899,224$	$1,899,224$
T9	40266	L6002 Deteriorated Plant Replacements	$1,340,019$	$1,340,019$
T10	40231	2011 Protection Upgrades LAK	$1,069,632$	$1,609,905$
T11	40307	L-6033 and L-6035 Water St. Transmission Tower Refurbishment	995,497	995,497
T12	40270	L-5501 Upgrade 69 kV Circuit to Bridge Ave	800,793	$\mathbf{8 0 0 , 7 9 3}$
T13	40323	Canaan Road Line Terminal	738,632	$\mathbf{7 3 8 , 6 3 2}$
T14	40296	2011 Transmission Steel Tower Painting	587,142	587,142
T15	40279	2011 Pole Retreatment	516,341	516,341
T16	40321	Install Canaan Road to Prospect Road Transmission Line	62,412	$2,024,763$
				$\mathbf{3 0 , 3 6 7 , 1 3 7}$
		Total Transmission NewSpending	$\mathbf{3 2 , 8 6 9 , 7 6 1}$	

Where NSPI has forecast contract forces to perform Transmission and Distribution work, certain assumptions have been included with regards to the activities and items in the contract price to make the rate essentially all inclusive versus the NSPI labor rate. These same items are accounted for separately and are not reflected in the labour accounts/ person day rate the NSPI cost estimate provides when NSPI is to perform the work activity.

## CI Number: 40233

Title: 2011 Protection Upgrades TUC
Start Date: 2011/06
Final Cost Date: 2011/12
Function: Transmission
Forecast Amount: $\$ 3,928,932$

## DESCRIPTION:

This project provides for the costs to upgrade the protection system at 91 H -Tuft's Cove to comply with Northeast Power Coordination Council (NPCC) criteria for bulk power systems.

Summary of Related CI's +/- 2 years:
2010 - 382662010 Protection Upgrades \$313,311
2011 - 402312011 Protection Upgrades LAK \$1,609,905
2012 - 2012 Protection Upgrades Brushy Hill \& Onslow \$TBD
JUSTIFICATION:
Justification Criteria: Transmission Plant
Sub Criteria: System Protection
Why do this project?
In 2008, NPCC approved new criteria (Criteria Document A-10) for determining whether a substation bus is categorized as bulk power. This criteria is used to identify substation busses that, if a fault (short circuit) was not successfully cleared by protection, the situation could result in disturbances outside the local operating area. Stations identified through this criterion are required to have fully redundant protection, control and communication schemes as defined in NPCC Directory \#4.- Bulk Power System Protection Criteria. The A-10 Criteria requires the 91 H -Tufts Cove substation bus to be upgraded to satisfy the A-10 Criteria.

## Why do this project now?

Implementation of the redundant protection, control and communication schemes is required to be completed by the end of 2012. Because this work is significant, NSPI has chosen to complete the five stations requiring this upgrade over a three year period. A portion of 79N-Hopewell was completed in 2010 as CI 38266. This item when originally submitted within the 2010 ACE Plan was intended to include the costs for upgrading to NPCC standards 79N-Hopewell, 91H - Tuft’s Cove and 208H - Burnside. Prior to requesting full approval of the project, and due to removal of the bulk power designation for the Burnside substation and an increase in the scope of the work required at Tuft's Cove, CI 38266 was modified to include only the scope Hopewell protection system upgrades. 91H-Tuft's Cove will be completed in 2011, as will the 138 kV portion of 103 H -Lakeside, submitted as a separate CI. 1N-Onslow and 120 H -Brushy Hill will be submitted in 2012.

## Why do this project this way?

To comply with NPCC standards, fully redundant protection, control and communication systems must be installed for all bulk power elements identified under the A-10 Criteria.
CI Number : 40233


## CI 40233-2011 Protection Upgrades TUC

The following is a breakdown of costs associated with the 2011 Protection Upgrades TUC Project.

Administrative Overhead and Interest
Materials
Contracts
Other
COPS Labour


Total
\$3,928,932

The contracts cost estimate for this project is based on work being performed in the Tufts Cove substation by contractors and is not expected to be completed by an affiliate. NSPI COPS labour will be carried out by internal technicians and electricians at a rate of approximately \$ person day along with engineering design work. This is a major redesign of the Tufts Cove 69 kV substation. It will include a second control building, batteries and a second protection scheme. In addition, the majority of the 69 kV circuit breakers will be changed out. The estimates for the new circuit breakers are based on quotes associated with the circuit breaker replacement program in 2010.

NSPI carried out the A-10 test for Nova Scotia. A list of substations that A-10 test criteria identified as Bulk Power was submitted to Northeast Power Coordinating Council (NPCC). Once a bus (a substation at a given voltage level) is identified as Bulk Power as per the A-10 test, the requirement for redundant protection schemes is an absolute requirement. The only possibility of eliminating the redundant protection criteria is to find a solution that allows the substation to be removed from the Bulk Power designation. In 2010, NSPI reduced the number of substations within the province that were to be classified as Bulk Power through successful justification for removal of four from the list of nine. Those that were removed were 104 H -Kempt Road, 90 H -Sackville, 47 C NewPage and 108 H -Burnside.

NSPI plans to complete the remainder of the projects as follows:

$$
\begin{array}{ll}
\text { 79N-Hopewell } & 2010 / 2011 \\
\text { 91H-Tuft's Cove } & 2011 \\
\text { 103H-Lakeside } & 2011 / 2012 \\
\text { 1N-Onslow } & 2012 \\
\text { 20H-Brushy Hill } & 2012
\end{array}
$$

## Implementation Plan for Revised NPCC Document A-10

Approved by Full Member Ballot - December 01, 2009

This Implementation Plan provides for testing in accordance with the revised NPCC Classification of Bulk Power System Elements, Document A-10, to be completed as follows:

- Testing in accordance with the revised A-10 methodology shall be performed on all facilities that have not been evaluated under the existing A-10 methodology as of the date the revised A-10 is approved.
- Testing in accordance with the revised A-10 methodology shall be performed on all facilities within five years from the date the revised A-10 is approved.

Each Area shall ensure that this Implementation Plan is followed within its Area.

# Document A-10 

## Classification of Bulk Power System Elements

Adopted by the Members of the Northeast Power Coordinating Council Inc., this April 28, 2007 based on recommendation by the Reliability Coordinating Committee, in accordance with Section VIII of the NPCC Inc. Bylaws dated May 18, 2006 as amended to date.

### 1.0 Introduction

NPCC defines specific requirements applicable to design, operation, and protection of the bulk power system. The object of this Classification of Bulk Power System Elements (Document A-10) is to provide the methodology to identify the bulk power system elements, or parts thereof, of the interconnected NPCC Region.

The methodology in this document is used to classify elements of the bulk power system and may result in elements being added to or removed from the NPCC Bulk Power System List. The methodology in this document is based on the following:

- Results of an analysis done on a bus basis can be applied to identify which elements, or portions thereof, connected to the bus are part of the bulk power system.
- Elements shall not automatically be included or excluded from the bulk power system based on voltage class. Application of this methodology may be omitted at buses that can be logically excluded from the bulk power system based on study results at other buses tested using this methodology. If a bus is determined to be bulk power system, all other buses with elements connected to that bus must be tested.
- Elements shall be evaluated based on this methodology when significant changes occur on the system that could change an element's bulk power system status; the evaluation may be limited to the affected part of the system.
- Areas and facility owners may adopt methodologies that exceed the requirements set forth in this document for their own purposes. However, only elements classified as bulk power system as a result of testing described in this document shall be included on the NPCC's list of bulk power system elements. NPCC criteria and compliance monitoring shall consider only the system elements listed on NPCC's list of bulk power system elements.

The Classification of Bulk Power System Elements is based on three defined terms: bulk power system, local area and significant adverse impact.

### 2.0 Definitions

NPCC Inc. Document A-10
Classification of
Bulk Power System Elements
Revised - December 01, 2009

Terms in italics in this document are defined in this section.
Terms in bold are defined in the NPCC Glossary of Terms (Document A-7).

### 2.1 Bus

Within this document the term bus refers to a junction with sensing or protection equipment within a substation or switching station at which the terminals of two or more elements are connected, regardless of whether circuit breakers are provided. In this context, bus may not have a direct correlation to the use of this term in substation design or a power flow data set.

In some configurations a bus may include more than one physical bus, such as in a breaker-and-a-half arrangement or a single-line-single-breaker arrangement in which two physical buses are connected through a bus-tie breaker. The examples in Figure 1 depict two of many possible configurations where two physical buses are tested as a single bus. Buses that are separated by normally open bus-tie breakers are considered as separate buses. The termination of line sections through switches should not be considered as a bus requiring testing unless the switches are activated as part of a protection system for the line which they sectionalize as part of normal protection system actions.


Figure 1 - Configurations where Bus $A$ and Bus $B$ are tested as one bus.

In some configurations elements may not be terminated to the bus through circuit breakers, such as the generator bus for a unit connected generator or a bus between a transmission line and transformer that are switched as a single circuit. The examples in Figure 2 depict two of many configurations where two physical buses are tested as separate buses.


Figure 2 - Configurations where Bus A and Bus B are tested as two separate buses.

### 2.2 Uncleared Locally

Within this document the phrase uncleared locally is used to denote failure of the protection including Special Protection Systems for the bus under test to initiate tripping of all associated interrupting devices regardless of their location.

Protection located at other buses is assumed to operate as designed when that protection cannot be disabled by failure of a single component in common with the protection at the bus under test. For example, consider the case where the protection for elements connected to higher voltage level and lower voltage level buses in the same station share a dc source, and an independent dc source is provided for second protection groups associated with elements connected to the higher voltage level bus. In this case, it is acceptable when testing the lower voltage level bus to assume correct operation of any protection groups associated with elements connected to the higher voltage level bus capable of detecting the fault and supplied by the independent dc source.

In cases where circuit breakers are not provided at the terminals of the element at the bus under test (as shown in Figure 2, bus A), uncleared locally includes a failure to clear a fault by circuit breakers located at another bus within the same substation, unless back-up protection at that other bus using an independent dc source would detect the fault and initiate clearing.

### 3.0 Classification of Bulk Power System Elements

### 3.1 Testing Conditions and Assumptions

Studies conducted for the purpose of determining the elements of the bulk power system shall assume the following conditions:
3.1.1. Power flow transfers, load and generation patterns expected to exist for the period under study which stress the system in a manner critical to the classification of the bus to be tested. All reclosing facilities rendered inoperative.
3.1.2. Operation of Special Protection Systems, undervoltage load shedding and underfrequency load shedding modeled as designed.
3.1.3. Load models used in the Transient Stability Test are consistent with Area practices for the studies of rotor angle stability.
3.1.4. Load models used for steady state testing are either constant MVA or are based on actual system testing with LTC movement.
3.1.5. Stability simulation runs until the system response can be clearly determined.

### 3.1.6. Generic or detailed relay models to monitor, after tripping of remote terminals, the potential for tripping of un-faulted elements.

### 3.2 Test Methodology

Both transient stability and steady-state tests are used to determine the impact on system performance resulting from power system faults.

Testing is based on application of a bus fault at a single voltage level that is uncleared locally. Tripping of un-faulted elements associated with clearing the test fault does not constitute a significant adverse impact.

Depending on system configuration or topology, testing only faults at buses can fail to uncover significant adverse impacts arising from a design criteria contingency involving the loss of two adjacent transmission circuits on a common tower. Hence, specific tests in 1c and 2c below are designed to assess this contingency for its potential significant adverse impact outside of the local area.

A transient stability test may be done first to identify buses at which faults may cause a significant adverse impact outside of the local area.

For those buses which are not classified as bulk power system in the transient stability test, a steady-state test is used to identify buses at which faults may cause a significant adverse impact outside of the local area.

# NPCC Inc. Document A-10 <br> Classification of <br> Bulk Power System Elements Revised - December 01, 2009 

## Step 1-Transient Stability Test

Simulate the transient stability condition of a three-phase fault with delayed clearing at the bus under test (step 1a). If the test results in a positive bulk power system determination, more detailed testing (step 1b) may be applied to obtain a more precise determination.

1a. Apply a three-phase fault for at least 10 seconds at the bus that is being tested. Do not open any of the elements connected to the bus for the duration of the fault. After 10 seconds, simulate tripping of all terminals of each element connected to the bus under test. In cases where there is no fault interrupting device at the remote terminal of an element, open all terminals of all elements between the bus under test and the interrupting device(s) that will open to clear the fault. This test is performed as an efficient, but conservative method for evaluating the impacts of:

- bus faults which would result in faster clearing time, and
- faults off the bus.

It is recognized that due to the conservative nature of this test some elements could be classified unnecessarily as part of the bulk power system. If the above test results in a positive bulk power system determination, the following additional testing may be utilized to obtain a more precise determination. Subsequent testing utilizes design clearing times for the conditions being tested, as stated below.

1b. Apply a three-phase fault at the bus, which is uncleared locally and trip the remote terminals of all elements that will open to clear the fault. Remote clearing times shall be based on design fault clearing times, assuming no communications from the station under test to the remote terminals.

Transformers and other elements connected to the bus shall only be tripped by operation of independent remote protection groups capable of clearing a fault on the bus under test.

Some protection groups (e.g. directional comparison blocking) at remote terminals may provide high-speed fault clearing for faults at the bus under test. In order to test the effects of longer fault clearing times for fault conditions when these remote protection
groups would not provide high speed fault clearing, for either test (1a) or (1b) above:

- High-speed fault clearing at remote terminals must be ignored; or
- Testing must vary the placement of the 3-phase fault on the elements connected to the bus under test to include locations beyond the reach of the high-speed tripping relay element at the remote terminal.

However, the protective relay settings may be reviewed to determine whether the bus could be classified as not part of the bulk power system if faster remote fault clearing can be achieved. If protective relay settings are modified, an assessment shall be conducted to ensure that the faster clearing time does not compromise the security of the protection system. Until the protective relay settings are modified, the bus must be classified as bulk power system.

1c. The test above is meant to cover the majority of design criteria contingencies. However, the elements associated with the bus under test must be reviewed to ensure adverse consequences resulting from a design criteria contingency involving the loss of two adjacent transmission circuits on a common tower are not overlooked.

If a circuit terminating at the bus under test shares a multiple circuit tower with an adjacent circuit that does not terminate at the bus under test, the adjacent circuit design contingency must also be assessed. In such cases, simultaneous permanent phase to ground faults on different phases of each of two adjacent transmission circuits shall be applied at critical common tower locations. The fault on the circuit associated with the bus under test which is uncleared locally, shall be simulated with normal fault clearing at the remote terminal and on the adjacent circuit.

If the fault has a significant adverse impact outside of the local area, the bus is classified as part of the bulk power system.

For buses not classified as part of bulk power system in Step 1, continue with the Steady State Test in step 2.

## Step 2 - Steady State Test

Simulate the post-contingency steady-state conditions based on one of the
following outcomes of the fault applied to the bus under test:
2a. If the fault was cleared based on design fault clearing times in the Transient Stability Test, open the same elements that were opened to clear the fault in the Transient Test. Post-contingency conditions shall reflect operation of all automatic devices.

2b. If the fault was not cleared based on design fault clearing times in the Transient Stability Test, assume that the fault propagates to the nearest location where it can be detected by independent protection groups and open the elements that would be opened by the protection groups to clear the fault. Note that because fault clearing will occur at interrupting devices capable of clearing the fault, it may be necessary to open multiple elements between the bus under test and the relevant interrupting devices, for example, a transmission line and transformer in series as shown in Figure 2.

2c. As in Step 1, the steady state test above is meant to cover the majority of design criteria contingencies. However, the elements associated with the bus under test must be reviewed to ensure adverse consequences resulting from a design criteria contingency involving the loss of two adjacent transmission circuits on a common tower are not overlooked. The post-contingency analysis must assess the loss of any adjacent circuit on common towers with a circuit terminating at the bus under test in addition to the elements associated with the bus under test.

Voltages and thermal loading will be assessed for significant adverse impact outside of the local area following automatic actions. In cases where a power flow solution is not obtained, other techniques shall be used to assess the impact of the event on the power system.

If the fault has a significant adverse impact outside of the local area, the bus is classified as part of the bulk power system.

Note that Step 2 can be done prior to Step 1. If a bus is classified as part of the bulk power system by the Steady State Test (Step 2), the Transient Stability Test (Step 1) need not be done for that bus.

### 3.3 Utilization of Test Results to Classify on an Element-by-Element Basis.

Classification of bulk power system elements is achieved by applying the results of the above tests to the elements connected to the tested bus.

NPCC Inc. Document A-10
Classification of
Bulk Power System Elements
Revised - December 01, 2009
An element with only one terminal such as a generator, shunt reactor, or capacitor bank, is classified as part of the bulk power system if the bus at which it is connected is classified as part of the bulk power system.

An element with multiple terminals such as a transformer or transmission line is classified as part of the bulk power system if any terminal of the element is connected to a bus that is classified as part of the bulk power system. The bulk power system classification may be limited to only a portion of the element if all of the following conditions are met:

- At least one terminal is connected to a bus that is not part of the bulk power system.
- $\quad$ The Steady State Test has been applied at the buses connected to all terminals of the element and none of these buses have been classified as part of the bulk power system based on results of the Steady State Test.
- The Transient Stability Test has been applied between the terminals of the element to identify those portions of the element for which the Transient Stability Test will not result in a significant adverse impact outside of the local area.


### 3.4 Documentation

Documentation for Bulk Power System classification shall include:
3.4.1 The rationale for the test conditions and assumptions used that are not listed above in 3.1.
3.4.2 The criteria used in evaluating the result of the testing including but not limited to stability, voltage, and thermal performance.
3.4.3 Detailed result of the testing shall be provided upon request.

### 4.0 Application and List Maintenance

Each Area shall be responsible for the application of the Classification of Bulk Power System Elements as described in this document and shall submit proposed changes and supporting documentation to the Task Force on System Studies (TFSS).

NPCC Inc. Document A-10

The "NPCC Bulk Power System List" will be maintained by the TFSS. Additions to and removals from the NPCC Bulk Power System List will be submitted by TFSS to the Reliability Coordinating Committee (RCC) for approval.

### 4.1 Addition of Elements to the Bulk Power System List

When application of this methodology identifies an element that was not part of the bulk power system should be classified as a bulk power system element, documentation of the analysis shall be presented to the TFSS. Once classification of the element is recommended by TFSS and approved by the RCC the element will be added to the NPCC Bulk Power System List with the appropriate comments and information. All task forces and the Compliance Committee will be notified once an element is approved by the RCC to be added to the Bulk Power System List. Within three months of an element being added to the Bulk Power System List, a plan and schedule for achieving compliance shall be provided to TFSP for review and acceptance. TFSP may require modifications to the proposed plan and schedule.

### 4.2 Removal of Elements from the Bulk Power System List

When application of this methodology identifies a bulk power system element that no longer should be classified as a bulk power system element, documentation of the analysis shall be submitted to the TFSS. If reclassification of the element is recommended by TFSS and approved by the RCC, the element will be removed from the NPCC Bulk Power System List.

Lead Task Force:<br>Reviewed for concurrence by:<br>Review frequency:<br>References:<br>Task Force on Coordination of Planning<br>TFSS, TFCO, TFSP, and TFIST<br>4 years<br>Basic Criteria for Design and Operation of Interconnected Power Systems (Document A-2)<br>NPCC Glossary of Terms (Document A-7)

# NPCC <br> Regional Reliability Reference Directory \# 4 Bulk Power System Protection Criteria 

$\square \mid$

Adopted by the Members of the Northeast Power Coordinating Council, Inc. December 01, 2009 based on recommendation by the Reliability Coordinating Committee, in accordance with Section VIII of the NPCC Amended and Restated Bylaws dated July 24, 2007 as amended to date.

NPCC Reliability Reference Directory \# 4
Bulk Power System Protection Criteria
December 01, 2009

## Revision History

Version	Date	Action	Change Tracking (New,   Errata or Revisions)

## Table of Content

Title Page
Revision History2
Table of Content ..... 3
1.0 Introduction ..... 4
2.0 Terms Defined in This Directory ..... 6
3.0 NERC ERO Reliability Standard Requirements ..... 6
4.0 NPCC Regional Reliability Requirements ..... 7
5.0 NPCC Full Member More Stringent Requirements ..... 7
5.1 General Criteria ..... 7
5.2 Criteria for Dependability ..... 7
5.3 Criteria for Security ..... 8
5.4 Criteria for Dependability and Security ..... 8
5.5 Operating Time Criteria ..... 8
5.6 Current Transformer Criteria ..... 8
5.7 Voltage Transformer and Potential Devices Criteria ..... 9
5.8 Batteries and Direct Current (DC) Supply Criteria ..... 9
5.9 Station Service ac Supply Criteria ..... 10
5.10 Circuit Breaker ..... 10
5.11 Tele protection Criteria ..... 10
5.12 Environment ..... 11
5.13 Grounding Criteria ..... 12
5.14 Transmission Line Protection Criteria ..... 12
5.15 Breaker Failure Protection Criteria ..... 12
5.16 Generating Station Protection Criteria ..... 13
5.17 Automatic Under frequency Load Shedding Prot. System Criteria ..... 13
5.18 HV dc System Protection Criteria ..... 13
5.19 Protection System Testing and Maintenance Criteria ..... 13
5.20 Analysis of Protection Performance Requirements ..... 14
6.0 Measures and Assessments ..... 14
7.0 Compliance Monitoring ..... 14
Appendix A ..... 16

NPCC Reliability Reference Directory \# 4
Bulk Power System Protection Criteria
December 01, 2009
1.0 Introduction
1.1 Title Protection Criteria
1.2 Directory Number 4
1.3 Objective

The purpose of this Directory is to provide the protection criteria, for protection of the NPCC bulk power system. It is not a design specification.
1.4 Effective Date December 01, 2009
1.5 Background

This Directory was developed from the draft NPCC A-05 Bulk Power Protection Criteria document dated December 4, 2008 and approved B-05, B-07, B-24 and C-22 documents. Guidelines and procedures for consideration in the implementation of this Directory are provided in Appendix A.
1.6 Applicability

### 1.6.1 Functional Entities <br> Transmission Owners <br> Generator Owners

1.6.2 Facilities
1.6.2.1 New Facilities

These criteria shall apply to all new Bulk Power System (BPS) facilities.

### 1.6.2.2 Existing Facilities

It is the responsibility of individual companies to assess the protection systems at existing facilities and to make modifications which are required to meet the intent of these criteria as follows.
1.6.2.2.1 Planned Renewal or Upgrade to Existing BPS Facilities

It is recognized that there may be portions of the bulk power system, which existed prior to each member's adoption of the Bulk Power System Protection Criteria (Document A-5) that do not meet these criteria. However, if protection systems or sub-systems of these facilities are replaced as part of a planned renewal or upgrade to the facility and do not meet all of these criteria, then an assessment shall be conducted for those criteria that are not met.

The result of this assessment shall be reported, It is recommended this reporting be in accordance with the procedure stipulated in Section 4.0 of Appendix A of this Directory and using the appropriate portion of the "Protection System Review forms" (formerly C-22 forms), for review and disposition by the TFSP, or in a form consistent with the intent of the procedure.

### 1.6.2.2.2 Facility Classification Upgraded to Bulk Power System.

These criteria apply to all existing facilities which become classified as bulk power system. A mitigation plan shall be required to bring such a facility into compliance with these criteria.

Where the owner of the protection system has determined that the cost and risks involved to implement physical separation, as per Section 5.12, cannot be justified, the reason for this determination and an assessment shall be reported to the TFSP.

It is recommended this reporting be in accordance with the procedure stipulated in Section 4.0 of Appendix A of this Directory and using the appropriate portion of the "Protection System Review forms" (formerly C-22 forms), for review and disposition by the TFSP, or in a form consistent with the intent of
the procedure.
1.6.2.2.3 Additions to Bulk Power System Facilities

If a bulk power system element is added to an existing bulk power system facility that is recognized under Section 1.6.2.2.1, Planned Renewal or Upgrade to Existing Facilities, these criteria apply to the protection systems for the new element.
1.6.2.2.4 $\begin{array}{ll} & \text { "In-Kind" Replacement of Bulk Power } \\ & \text { System Equipment }\end{array}$

If a bulk power system element (e.g., breaker, transformer, capacitor bank, reactor, etc.) or a protective relay is replaced "in kind" as a result of an unplanned event, then it is not required to upgrade the associated protection system to comply with these criteria.
1.6.2.2.5 Change in Bulk Power System Facility Status

When a facility was originally on the BPS list of April 2007 and has been shown to be nonBPS but later was determined to be BPS again, Section 1.6.2.2.1 would apply. When the facility returns to BPS status, it shall be maintained in accordance with Directory \#3 within two years timeframe.

### 1.6.3 Responsibility

Whenever changes are anticipated in generating sources, transmission facilities, or operating conditions, Generator Owners and Transmission Owners shall review those protection system applications (i.e., settings, ac and dc supplies) which can reasonably be expected to be impacted by those changes.

### 2.0 Terms Defined in this Directory

The definitions of terms found in this Directory appearing in bold typeface, can be found in Document A-07, NPCC Glossary of Terms.

### 3.0 NERC ERO Reliability Standard Requirements

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

The NERC ERO Reliability Standards containing requirements that are associated with this Directory include, but may not be limited to:
$3.1 \quad$ PRC-001
$3.2 \quad$ PRC-002
3.3 PRC-012
4.0 NPCC Regional Reliability Standard Requirements

None.

### 5.0 NPCC Full Member, More Stringent Criteria

These Criteria are in addition, more stringent or more specific than the NERC or any Regional Reliability standard requirements.

### 5.1 General Criteria

The intent of the criteria established in this Directory is to ensure dependable and secure operation of the protection systems for Bulk Power System facilities. For those protective relays intended for removal of faults from the bulk power system, dependability is paramount, and the redundancy provisions of the criteria shall apply. For Protective relays installed for reasons other than fault sensing such as overload, etc., security is paramount, and the redundancy provisions of the criteria do not apply. The relative effect on the bulk power system of a failure of a protection system to operate when desired versus an unintended operation shall be weighed carefully in selecting design parameters as follows.
5.2 Criteria for Dependability
5.2.1 Except as identified otherwise in these criteria, all elements of the bulk power system shall be protected by two protection groups, each of which is independently capable of performing the specified protective function for that element. This requirement also applies during energization of the element.
5.2.2 Except as identified otherwise in these criteria, the two protection groups shall not share the same component.
5.2.3 Means shall be provided to trip all necessary local and remote breakers in the event that a breaker fails to clear a fault. This protection need not be duplicated.

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

### 5.3 Criteria for Security

Protection systems shall be designed to isolate only the faulted element, except in those circumstances where additional elements are tripped intentionally to preserve system integrity, or where isolating additional elements has no impact outside the local area.
5.4 Criteria for Dependability and Security
5.4.1 The thermal capability of all protection system components shall be adequate to withstand rated maximum short time and continuous loading of the associated protected elements.
5.4.2 Communication link availability, critical switch positions, and trip circuit integrity, shall be monitored to allow prompt attention by appropriate operating authorities.
5.4.3 When remote access to protection systems is possible, the design shall include security measures to minimize the probability of unauthorized access to the protection systems.
5.4.4 Short Circuit Models used to assess protection scheme design and to develop protection settings shall take into account minimum and maximum fault levels and mutual effects of parallel transmission lines. Details of neighboring systems shall be modeled wherever they can affect results significantly.

### 5.5 Operating Time Criteria

Bulk power system protection shall take corrective action within times determined by studies with due regard to security, dependability and selectivity.

### 5.6 Current Transformer Criteria

Current transformers (CTs) associated with protection systems shall have adequate steady-state and transient characteristics for their intended function as follows:
5.6.1 The output of each current transformer secondary winding shall be designed to remain within acceptable limits for the connected burdens under all anticipated fault currents to ensure correct operation of the protection system.
5.6.2 The thermal and mechanical capabilities of the CT at the operating
tap shall be adequate to prevent damage under maximum fault conditions and normal or emergency system loading conditions.
5.6.3 For protection groups to be independent, they shall be supplied from separate current transformer secondary windings.
5.6.4 Interconnected current transformer secondary wiring shall be grounded at only one point.
5.6.5 Current transformers shall be connected so that adjacent protection zones overlap.
5.7 Voltage Transformer and Potential Devices Criteria

Voltage transformers and potential devices associated with protection systems shall have adequate steady-state and transient characteristics for their intended functions as follows:
5.7.1 Voltage transformers and potential devices shall have adequate voltampere capacity to supply the connected burden while maintaining their relay accuracy over their specified primary voltage range.
5.7.2 The two protection groups protecting an element shall be supplied from separate voltage sources. The two protection groups may be supplied from separate secondary windings on one transformer or potential device, provided all of the following requirements are met:
5.7.2.1 Complete loss of one or more phase voltages does not prevent all tripping of the protected element;
5.7.2.2 Each secondary winding has sufficient capacity to permit fuse protection of the circuit;
5.7.2.3 Each secondary winding circuit is adequately fuse protected.
5.7.3 The wiring from each voltage transformer secondary winding shall not be grounded at more than one point.
5.8 Batteries and Direct Current (DC) Supply Criteria

DC supplies associated with protection shall be designed to have a high degree of dependability as follows:
5.8.1 No single battery or dc power supply failure shall prevent both
independent protection groups from performing the intended function. Each battery shall be provided with its own charger. Physical separation shall be maintained between the two station batteries or dc power supplies used to supply the independent protection groups.
5.8.2 Each station battery shall have sufficient capacity to permit operation of the station, in the event of a loss of its battery charger or the ac supply source, for the period of time necessary to transfer the load to the other station battery or re-establish the supply source. Each station battery and its associated charger shall have sufficient capacity to supply the total dc load of the station.
5.8.3 A transfer arrangement shall be provided to permit connecting the total load to either station battery without creating areas where, prior to failure of either a station battery or a charger, a single event can disable both dc supplies.
5.8.4 The battery chargers and all dc circuits shall be protected against short circuits. All protective devices shall be coordinated to minimize the number of dc circuits interrupted.
5.8.5 Dc systems shall be continuously monitored or annunciated to detect abnormal voltage levels (both high and low), dc grounds, and loss of ac to the battery chargers, in order to allow prompt attention by the appropriate operating authorities.
5.8.6 Protection group dc sources shall be continuously monitored to detect loss of voltage in order to allow prompt attention by the appropriate operating authorities.

### 5.9 Station Service ac Supply Criteria

On bulk power system facilities there shall be two sources of station service ac supply, each capable of carrying at least all the critical loads associated with protection systems.
5.10 Circuit Breaker

No single trip coil failure shall prevent both independent protection groups from performing the intended function. The design of a breaker with two trip coils shall be such that the breaker will operate if both trip coils are energized simultaneously. The correct operation of this design shall be verified by tests.

### 5.11 Teleprotection Criteria

5.11.1 Communication facilities required for teleprotection shall be designed to have a level of performance consistent with that required of the protection system, and shall meet the following:
5.11.1.1 Where each of the two protection groups protecting the same bulk power system element requires a communication channel, the equipment and channel for each protection group shall be separated physically and designed to minimize the risk of both protection groups being disabled simultaneously by a single event or condition.
5.11.1.2 Teleprotection equipment shall be monitored to detect loss of equipment and/or channels to allow prompt attention by the appropriate operating authorities.
5.11.1.3 Teleprotection equipment shall be provided with means to test for proper signal adequacy.
5.11.1.4 Teleprotection equipment shall be powered by the substation batteries or other sources independent from the power system.
5.11.1.5 Except as identified otherwise in these criteria, the two teleprotection groups shall not share the same component.
5.11.1.5.1 The use of a single communication tower for the radio communication systems used by two protection groups protecting a single element is permitted as long as directional diversity of the communication signals is achieved.
5.12 Environment
5.12.1 Each separate protection group and teleprotection protecting the same system element shall be on different non-adjacent vertical mounting assemblies or enclosures.
5.12.2 Wiring for separate protection groups and teleprotections protecting the same system element shall not be in the same cable.
5.12.3 Cabling for separate protection groups and teleprotections protecting the same system element shall be physically separated. This can be accomplished by being in different raceways, trays,
trenches, etc.
5.12.4 In the event a common raceway is used, cabling for separate protection groups protecting the same system element shall be separated by a fire barrier.

### 5.13 Grounding Criteria

Station grounding is critical to the correct operation of protection systems. The design of the ground grid directly impacts proper protection system operation and the probability of false operation from fault currents or transient voltages. Each member shall have established as part of its substation design procedures or specifications, a mandatory method of designing the substation ground grid, which:
5.13.1 Can be traced to a recognized calculation methodology
5.13.2 Considers cable shielding
5.13.3 Considers equipment grounding
5.14 Transmission Line Protection Criteria
5.14.1 Protection system settings shall not constitute a loading limitation as per NERC requirement/standard. In cases where NERC approved exceptions are used the limits thus imposed shall be adhered to as system operating constraints.
5.14.2 A pilot protection shall be so designed that its failure or misoperation will not affect the operation of any other pilot protection on that same element.
5.15 Breaker Failure Protection Criteria

Means shall be provided to trip all necessary local and remote breakers in the event that a breaker fails to clear a fault, as follows.
5.15.1 Breaker failure protection shall be initiated by each of the protection groups which trip the breaker, with the optional exception of a breaker failure protection in an adjacent zone.
5.15.2 Fault current detectors shall be used to determine if a breaker has failed to interrupt a fault.

### 5.16 Generating Station Protection Criteria

All under- and over-frequency protection systems designed to disconnect generators from the power system shall be coordinated with automatic under frequency load shedding programs, in accordance with the Emergency Operation Criteria (Directory \#2).
5.17 Automatic Under frequency Load Shedding Protection System Criteria
5.17.1 The requirements and guides for the operation of these Protection Systems are detailed in the Emergency Operation Criteria (Directory \#2). The guideline for automatic under frequency load shedding protective relaying design is provided in Appendix A of this Directory.
5.18 HVdc System Protection Criteria
5.18.1 The ac portion of an HVdc converter station, up to the valve-side terminals of the converter transformers, shall be protected in accordance with these criteria.
5.18.2 Multiple commutation failures, unordered power reversals, and faults in the converter bridges and the dc portion of the HVdc link which are severe enough to disturb the bulk power system shall be detected by more than one independent control or protection group and appropriate corrective action shall be taken, in accordance with the considerations in these criteria.
5.19 Protection System Testing and Maintenance Criteria
5.19.1 Protection systems shall be maintained in accordance with the Maintenance Criteria for Bulk Power System Protection (Directory \#3).
5.19.2 The design of protection systems both in terms of circuitry and physical arrangement shall facilitate periodic testing and maintenance.
5.19.3 Each protection group shall be functionally tested to verify the dependability and security aspects of the design, when initially placed in service and when modifications are made.
5.20 Analysis of Protection Performance Requirements
5.20.1 Bulk power system automatic operations shall be analyzed to determine proper protection system performance. Corrective measures shall be taken promptly if a protection group fails to operate or operates incorrectly.
5.20.2 Event and fault recording capability shall be provided to the extent required to permit analysis of system disturbances and protection system performance.
5.20.3 Internal clocks in event and fault recording equipment shall be time synchronized to within 2 milliseconds or less of Universal Coordinated Time scale. The time zone shall be clearly identified as either universal time zone or local time zone.
5.20.4 Each protective relay which trips Bulk Power System equipment shall provide separate target indication.
6.0 Measures and Assessments

None developed at this time.
7.0 Compliance Monitoring
7.1 Each member shall provide the Task Force on System Protection (TFSP) with advance notification of any of the member's new bulk power system protection systems, or significant changes in the member's existing bulk power system protection systems.
7.2 Each member shall also provide the TFSP with advance notification of nonmember protection facilities as required per NPCC Bylaws.
7.3 Each new or revised protection system shall be reported to the TFSP. It is recommended this reporting be in accordance with the procedure detailed in Section 4.0 of Appendix A of this Directory, or in a form consistent with the intent of the procedure.
7.4 Adherence to these Criteria shall be reported by the responsible entity in a manner and form designated by the Compliance Committee.

Prepared by: Task Force on System Protection
Review and Approval: Revision to any portion of this Directory will be posted by the lead Task Force in the NPCC Open Process for a 45 day review

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.
and comment period. Upon satisfactorily addressing all the comments in this forum, the Directory document will be sent to the remaining Task Forces for their recommendation to seek RCC approval.

Upon approval of the RCC, this Directory will be sent to the Full Member Representatives for their final approval if sections pertaining to the Requirements and Criteria portion have been revised. All voting and approvals will be conducted according to the most current "NPCC. Bylaws" in effect at the time the ballots are cast.

Revisions pertaining to the Appendices or any other portion of the document such as Links glossary terms, etc., only RCC Members will need to conduct the final approval ballot of the document.

This Directory will be updated at least once every three years and as often as necessary to keep it current and consistent with NERC, Regional Reliability Standards and other NPCC documents.

# Appendix A <br> Guideline and Procedure for Bulk Power System Protection 

### 1.0 Introduction

This Appendix provides the guidance for consideration in the implementation of the bulk power system Protection criteria stipulated in this Directory, and the procedure on reporting new and revised bulks power system protection facilities.
2.0 Design Considerations

### 2.1 General Considerations

In general, the function of a protection system is to limit the severity and extent of system disturbances and possible damage to system equipment.

The Directory's criteria objectives can be met only if protection systems have a high degree of dependability and security. In this context dependability relates to the degree of certainty that a protection system will operate correctly when required to operate. Security relates to the degree of certainty that a protection system will not operate when not required to operate.

Often increased security (fewer unintended operations) results in decreased dependability (more failures to operate), and vice versa. As an example, consideration is given to the consequence of applying permissive line protection schemes, which often are more secure, but less dependable, than blocking line protection schemes. The relative effect on the bulk power system of a failure of a protection system to operate when desired versus an unintended operation should be weighed carefully in selecting design parameters. Considerations for specific aspects of protection design are provided below.
2.2 Issues Affecting Dependability
2.2.1 Some portions of elements may not in themselves be part of the bulk power system. Those portions do not require two protection groups.
2.2.2 Two identical measuring relays should not be used in independent protection groups due to the risk of simultaneous failure of both groups because of design deficiencies or equipment problems.
2.2.3 In addition to the separation requirements in the criteria, areas of common exposure should be kept to a minimum to reduce the possibility of both protection groups being disabled by a single

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

## Appendix A

event such as fire, excavation, water leakage, and other such incidents.
2.2.4 On installations where free-standing or column-type current transformers are provided on one side of the breaker only, resulting in a protection blind spot, protection should be provided to detect a fault to ground on the primaries of such current transformers. When frame ground protection is used, then frame ground and breaker failure protections are the two local independent protections for the blind spot between the current transformer and the circuit breaker. Neither of these protections need be duplicated. Both of these protections should be designed so as to not be disabled by the same failure. The frame ground protection and breaker failure protection will in fact provide independent protections for the blind spot.
2.3 Issues Affecting Security
2.3.1 For faults external to the protected zone, each protection group should be designed either to not operate, or to operate selectively with other groups and with breaker failure protection.
2.3.2 For planned system conditions, protection systems should not operate to trip for stable power swings.
2.4 Issues Affecting Dependability and Security
2.4.1 Protection systems should be no more complex than required for any given application.
2.4.2 The components and software used in protection systems should be of proven quality, as demonstrated either by actual experience or by stringent tests under simulated operating conditions.
2.4.3 Protection systems should be designed to minimize the possibility of component failure or malfunction due to electrical transients and interference or external effects such as vibration, shock and temperature.
2.4.4 Protection system circuitry and physical arrangements should be designed so as to minimize the possibility of incorrect operations due to personnel error.
2.4.5 Protection system automatic self-checking facilities should be designed so as to not degrade the performance of the protection

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

## Appendix A

## system.

2.4.6 Consideration should be given to the consequences of loss of instrument transformer voltage inputs to protection systems.
2.4.7 Protection systems, including intelligent electronic devices (IEDs) and communication systems used for protection, should comply with applicable industry standards for utility grade protection service. Utility Grade Protection System Equipment are equipment that are suitable for protecting transmission power system elements, that are required to operate reliably, under harsh environments normally found at substations. Utility grade equipment should meet the applicable sections of all or some of the following types of industry standards, to ensure their suitability for such applications:

- IEEE C37.90.1-2002 (oscillatory surge and fast transient)
- IEEE C37.90.1-2002 (service conditions)
- IEC 60255-22-1, 2005 (1 MHz burst, i.e. oscillatory)
- IEC 61000-4-12, 2001 (oscillatory surge)
- IEC 61000-4-4, 2004 (EFT)
- IEC 60255-22-4, 2002 (EFT)
- IEEE C37.90.2-2004 (narrow-band radiation)
- IEC 60255-22-3, 2000 (narrow-band radiation)
- IEC 61000-4-3, 2002 (narrow-band radiation)
- IEEE 1613 (communications networking devices in Electric power Substations)


### 2.5 Operating Time

Adequate time margin should be provided taking into account study inaccuracies, differences in equipment, and protection operating times. In cases where clearing times are deliberately extended, consideration should be given to the following:

- Effect on system stability or reduction of stability margins.
- Possibility of causing or increasing damage to equipment and subsequent extended repair and/or outage time.
- Effect of disturbances on service to customers.
2.6 Current Transformer

None.

## Appendix A

2.7 Voltage Transformers and Potential Devices

Voltage transformer installations should be designed with due regard to ferroresonance.
2.7.1 Special attention should be given to the physical properties (e.g. resistance to corrosion, moisture, fatigue) of the fuses used in protection voltage circuits.
2.8 Batteries and Direct Current (dc) Supply
2.8.1 The circuitry between each battery and its first protective device cannot be protected and therefore should be designed so as to minimize the possibility of electrical short circuit.
2.8.2 The design for the regulation of the dc voltage should be such that, under all anticipated charging and loading conditions, voltage within acceptable limits will be supplied to all devices, while minimizing ac ripple and voltage transients.
2.9 Station Service ac Supply

None.
2.10 Circuit Breakers

The indication of the circuit breaker position in protection systems should be designed to reliably mimic the main contact position.

### 2.11 Teleprotection

2.11.1 Teleprotection systems should be designed to prevent unwanted operations such as those caused by equipment or personnel.
2.11.2 Two identical teleprotection equipments should not be used in independent protection groups, due to the risk of simultaneous failure of both groups because of design deficiencies or equipment problems.
2.11.3 Areas of common exposure should be kept to a minimum to reduce the possibility of both groups being disabled by a single event such as fire, excavation, water leakage, and other such incidents.
2.11.4 Teleprotection systems should be designed to mitigate the effects of signal interference from other communication sources and to

## Appendix A

assure adequate signal transmission during bulk power system disturbances.
2.12 Environment

Means should be employed to maintain environmental conditions that are favorable to the correct performance of protection systems.
2.13 Grounding

None.
2.14 Transmission Lines Protection

For planned system conditions, line protection systems associated with transmission facilities should not operate to trip for stable power swings.
2.15 Breaker Failure Protection
2.15.1 It is not necessary to duplicate the breaker failure protection itself.
2.15.2 Auxiliary switches may also be required in instances where the fault currents are not large enough to operate the fault current detectors. In addition, auxiliary switches may be necessary for high-speed detection of a breaker failure condition.
2.16 Generating Station Protection
2.16.1 Each protection system should be designed to minimize the effects to the bulk power system of faults and disturbances, while itself experiencing a single failure.
2.16.2 Generators should be protected to limit possible damage to the equipment. The following are some of the abnormal (not necessarily fault) conditions that should be detected:

- Unbalanced phase currents, loss of excitation
- Overexcitation, generator out of step, field ground
- inadvertent energization.
2.16.2.1 Protections for the above conditions, which are applied for equipment protection, need not be duplicated.


## Appendix A

2.16.2.2 When a directional over current or distance relay is applied to remove the generator for slowly cleared faults on the external system, such protection is a backup and need not be duplicated.
2.16.2.3 The apparatus should be protected when the generator is starting up or shutting down as well as running at normal speed; this may require additional relays as the normal relays may not function satisfactorily at low frequencies.
2.16.2.4 Generator protection systems should not operate for stable power swings except when that particular generator is out of step with the remainder of the system. This does not apply to Special Protection Systems designed to trip the generator as part of an overall plan to maintain stability of the power system.
2.16.2.5 Loss of excitation and out of step relays should be set with due regard to the performance of the excitation system.
2.16.2.6 It is recognized that the overall protection of a generator involves non-electrical considerations that have not been included as a part of the criteria in this Directory.
2.16.2.7 All over frequency, overvoltage and under voltage protection systems designed to disconnect generators from the power system should be coordinated with automatic under frequency load shedding programs.

### 2.17 Automatic Under frequency Load Shedding Protection Systems

2.17.1 Automatic under frequency load shedding protection systems are not generally located at bulk power system stations; however, they have a direct effect on the operation of the bulk power system during major emergencies.
2.17.2 Automatic under frequency load shedding protection need not be duplicated.
2.17.3 Under frequency relays which operate at a discrete frequency value are called "under frequency threshold relays." Selection of under frequency sensing devices should be on a threshold basis. Alternatively, rate of change of frequency load shedding may be used when the requirements of the Balancing Authority indicate that this method will achieve the intent of the load shedding program.

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

## Appendix A

Appropriate studies are necessary to determine the application and settings of the rate of change of frequency relays for a particular Balancing Authority area.
2.17.4 In order for each Balancing Authority within NPCC to shed approximately the same proportion of load, given the same frequency condition, all styles and manufacture of under frequency relays should trip at essentially the same time. For electromechanical relays, time delay depends on rate of frequency decline, and it is not possible to achieve uniform response for different rates of decline. The recommendations in this guideline are based on the goal of a uniform response at a rate of frequency decline of 0.2 Hz per second.
2.17.5 Additional Application Considerations
2.17.5.1 Where undesired under frequency relay operation can be caused by decaying frequency due to isolated generation or motor load, additional supervising undercurrent or voltage relays may be used to prevent misoperation.
2.17.5.2 Where the AC voltage source for an under frequency relay is derived from a potential device connected to a cable circuit, care should be taken to estimate the voltage present during deenergization of the circuit. The natural frequency of the decaying cable voltage may be less than 60 Hz , and thus cause an incorrect relay operation.
2.17.5.3 The AC Voltage Inhibit feature available on some relays may be useful as a security tool to restrain operation during cable deenergization, depending on the voltage decay time constant
2.17.5.4 Due regard should be given to the expected power system voltage during events for which the underfrequency relays are expected to operate. The relay's minimum AC voltage operating characteristic should not inhibit proper relay operation, nor should the Voltage Inhibit feature, where it exists, be set to prevent proper operation.
2.17.6 Settings and Maintenance Recommendations
2.17.6.1 Pickup Time Delay Settings

## Appendix A

Pickup and time delay settings of underfrequency threshold relays should be applied in accordance with the requirements specified in Section 5.2 and Section 5.4 of Emergency Operation Criteria (Directory \#2).
2.17.6.2 Relay Performance Considerations

Any underfrequency relay which has been found to have drifted more than $\pm 0.2 \mathrm{~Hz}$ from its set point or $\pm 0.1$ seconds from its time delay should be recalibrated and then retested in six months. If, at that time, the relay has drifted $\pm 0.2 \mathrm{~Hz}$ or more from its set point or $\pm 0.1$ seconds or more from its fixed time delay, the cause of the drift should be corrected or the relay should be replaced.

### 2.17.6.3 Maintenance

Underfrequency load shedding relays have a direct effect on the operation of the bulk power system during major emergencies. These relays should be maintained in accordance with requirements stipulated in Maintenance Criteria for Bulk Power System Protection (Directory 3), even though they are usually located in non-bulk power system stations.
2.18 HVdc Systems Protection
2.18.1 Converter terminals should be protected to avoid excessive equipment stresses and to minimize equipment damage and outage time. These protections are usually specific to the design of the converter station(s) and are determined by the manufacturer to comply with availability guarantees. The followings are some conditions which should be detected:

- ac and dc undervoltage,
- ac and dc overvoltage,
- valve misfire,
- excessive harmonics on the dc,
- dc ground faults and open circuits,
- dc switching device failures,
- thyristor failures,
- valve and snubber circuit overloads.
2.18.2 The overall protection and control of an HVdc link may also involve the initiation of actions in response to abnormal conditions


## Appendix A

on the ac interconnected system. The control and protection systems associated with such conditions are not considered part of the HVdc systems protection.
2.19 Protection System Testing and Maintenance

Test facilities and test procedures should be designed such that they do not compromise the independence of protection groups protecting the same bulk power system element. Test devices or switches should be used to eliminate the necessity for removing or disconnecting wires during testing.
2.20 Analysis of Protection System

Insofar as possible, each active protective function within a protective relay should provide separate target information.
2.21 Transmission Station Protection
2.21.1 The protection systems should operate properly for the anticipated range of currents.
2.21.2 For planned system conditions, all station protection systems should not operate for load current or stable power swings.
2.21.3 Load responsive protection relays applied to transmission autotransformers should allow all possible load ability, consistent with equipment protection requirements.
2.21.4 Fault pressure or Buchholz relays used on transformers, phase shifters or regulators should be applied so as to minimize the likelihood of their misoperation due to through faults.
2.22.1 Each protection system should be designed to minimize the effects to the bulk power system of faults and disturbances, while itself experiencing a single failure.
2.22.2 Capacitor bank protection should be applied with due consideration for capacitor bank transients, power system voltage unbalance, and system harmonics.

## Appendix A

2.22.3 Protection may be provided to minimize the impact of failures of individual capacitor units on the remaining capacitor units, however, these types of protections do not need to be duplicated:
a. Overvoltage Protection
b. Individual fuses for each capacitor unit
c. Overvoltage Protection for each capacitor units

Static Var Compensation (SVC) Protection
2.23.1 The low voltage branch circuits contain the reactive controlling equipment, filters, etc. These may include all or some of the following:
a. Thyristor Controlled Reactors (TCR)
b. Thyristor Switched Capacitors (TSC)
c. Switched or Fixed Capacitors
d. Harmonic Filters
2.23.2 Protection for the branch circuits that are not part of the bulk power system need not be duplicated. Protection for these branch circuits should be applied with due consideration for capacitor bank transients, power system voltage unbalance, and system harmonics.
2.23.3 Protection against abnormal non-fault conditions within the SVC via control of the TSC and TCR valves should be designed so as to not interfere with the proper operation of the SVC.
2.24 Logic System

The design should recognize the effects of contact races, spurious operation due to battery grounds, dc transients, radio frequency interference or other such influences.

It is recognized that timing is often critical in logic schemes. Operating times of different devices vary. Known timing differences should be accounted for in the overall design.
2.25 Microprocessor-Based Equipment and Software

## Appendix A

A protection system may incorporate microprocessor-based equipment. Information from this equipment may support other functions such as power system operations. In such cases, the software and the interface should be designed so as to not degrade the protection system functions.
2.26 Control Cable, Wiring and Ancillary Control Devices

Control cables and wiring and ancillary control devices should be highly dependable and secure. Due consideration should be given to published codes and standards, fire hazards, current-carrying capacity, voltage drop, insulation level, mechanical strength, routing, shielding, grounding and environment.
2.27 Environment

Means should be employed to maintain environmental conditions that are favorable to the correct performance of protection systems.

### 3.0 Guideline for Application of Remote Access to Protection System

The following guideline is established for the application of remote access to protection system Intelligent Electronic Devices (IEDs), such as relays, programmable logic controllers (PLC), and teleprotection equipment that have remote access capabilities, and are designed and configured for remote access applications. It is intended to assist in meeting the requirement stipulated in Section 5.1.3.3 of this Directory, and Section 3.3.1.6 of the Special Protection System Criteria (Directory 7).

This guideline assumes that appropriate physical measures are in place, and that they meet all applicable standards.

### 3.1 Definitions for Use in this Guideline Only

The flowing defined terms are used for illustration of the guideline presented in this Section only. These terms are not defined in Appendix A of this Directory, or any other NPCC documents.

IED - Intelligent Electronic Device, normally computer based, equipped with digital communication abilities, some examples are protective relays, RTUs, SERs, DFRs, PLCs, data concentrators, telecommunications equipment, and general monitoring equipment.

PLC - Programmable Logic Controller, used to create and implement logical actions and automation.

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

## Appendix A

Remote Access - accessing a device from a remote geographical area via a communications link; once accessed, provides similar local device functionality, at a distance.

Authenticate - to prove to be genuine or is an approved user.

Intrusion - An unauthorized electronic entry into an IED. Access normally provides user access to the functionality of the device.

Cryptography - is the study and application of codes and ciphers. Codes or encryption is used to transform data into a form that is not directly usable. Decryption transforms encrypted data using a decryption key back into the original useful form.

VPN - Virtual Private Network. It uses encryption to provide a private channel between private networks using a public network as its carrier i.e., two users using the Internet to provide confidentiality, integrity, and authentication.

### 3.2 Governing Principles

The industry has become more reliant on computer technology for power system protection, control, communications, and automation of its power system. Electromechanical and solid-state technologies are being replaced with microprocessor devices, offering, among other functions, local and remote communications access. Protection system IEDs are employed to protect, and or operate power system elements. Unauthorized access to an IED could result in interruption of electric service, damage to the power system equipment, major disturbances, or a danger to life and property. Protection system IEDs also contain a large amount of information that utility personnel have come to rely on, including telemetry, power system disturbance analysis, fault location, preventive maintenance information, as well as asset condition and optimization data. However, this technology has also created vulnerabilities that are similar to those seen in traditional computer networks. Therefore, the following should be the governing principles of any cyber security program:

- Prevent penetration from cyber attacks.
- Prevent local and remote access to critical cyber assets by non-authorized personnel.
- Monitor cyber assets to detect unauthorized access or attempts to access.
- Limit exposure.
3.3 Guideline

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

## Appendix A

### 3.3.1 Authentication

One of the foundations of the cyber security program is controlled, or secure, access. This dictates that some form of user authentication be used. Three common means of authenticating a user's identity are:
3.3.1.1 Something the user knows, such as passwords, or IP addresses.
3.3.1.2 Something the user has, such as a key, or cryptographic token.

### 3.3.1.3 Something the user is, such as fingerprints and voiceprints

At minimum, at least two factors of authentication should be used, e.g., passwords, and a destination - telephone number, or an IP address. The use of more factors such as encryption, etc. will result in providing more secure authentication. However, most present day and legacy protection system IEDs do not yet support this technology. Existing equipment often contains some level of security features. At a minimum, they usually provide multi-level passwords. These features should be activated as a first step in security implementation

### 3.3.2 Substation IED Access Point

A list of all substation IEDs that have remote electronic access configured should be compiled and maintained. This list should also include the access method(s) (e.g., dial-in, WAN, etc), the associated phone numbers and/or IP address, passwords, and other pertinent data.

### 3.3.3 Approved Remote Access Authorization List

A list of approved users, and the station IEDs they are authorized to access, should be established and maintained. It is vital that all such access information be classified as confidential, and managed as such.

## Appendix A

### 3.3.4 Remote Access Configuration

Protection system IEDs should be configured to afford remote access only where needed and approved, and then, only when proper authentication is provided.

### 3.3.5 Password

Most protection system IEDs offer multiple access levels, each with separate passwords. Normally, a "view" only level is provided which allows a user to extract and or view information only. An alternate access level is provided to allow trained and authorized users to "make" settings and configuration changes, and initiate breaker operations. It is this level of access that is susceptible to an intrusion which could cause the most damage to the power system. Only limited users should have access to this level by considering the followings:
3.3.5.1 Establish multi-tiered passwords with different privileges for different classes of users.
3.3.5.2 Default passwords should be changed when remote access is configured.
3.3.5.3 Make sure that all IEDs have "strong" passwords, i.e., passwords that are not dictionary words, not easily guessable, not blank, or have no password at all. It is recommended that all passwords contain a combination of letters and numbers, and should be at least six characters long.

### 3.3.6 Logging/Alarming

When remote connections are used to access the relay beyond "view-only" mode, this should be alarmed and/or logged where possible.

### 3.3.7 Controlling Authority Approval

For both local and remote communications, excluding viewing, notification and approval of the Controlling Authority should be required to access in-service protection system IEDs. Only authorized users, as per Sections 3.3.3 and 3.3.5 above, should have remote access capabilities.

## Appendix A

### 3.3.8 Disable User Function

Often, protection system IEDs are put into service with functions that are not used. These functions can create vulnerabilities, and therefore, should be disabled if possible.

### 3.4 Other Available Higher Level Authentication Factors and Some General Good Practices

As stated in Section 3.3.1, a minimum of two factors of authentication should be used. However, the use of more factors will result in providing more secure authentication. This Section is intended to provide additional factors and practices that could be implemented where warranted, and where the technology allows.
3.4.1 For WAN based access systems, implement Virtual Private Network (VPN) technology. VPN technology is also applicable when using ISDN, DSL, and cable.
3.4.2 Limit, as far as possible, dependence on the public telephone network for substation communications to IEDs. Instead, use secure communications facilities whenever possible.
3.4.3 Call back (where the IED device or modem hangs up on the original caller and calls back on a second line to a preconfigured phone number) may be utilized as a portion of an IED's security to prevent unauthorized access. This security measure added to other security measures will improve the IEDs security. Security can be further enhanced by using a different telephone line for the return call.
3.4.4 For dial-up modem access, use a hardware lock and key dongle on the analog phone line at each modem and the lock and key combination will act as a gatekeeper. When a call is initiated, the lock at the called modem will verify the existence of a valid key at the calling modem Time.

## Appendix A

### 3.4.5 Isolation from the Business/Corporate Network

Isolation of the substation protection system IEDs from the Corporate Network should be provided where possible. Data can be transferred from the substation IEDs to a server connected to a Corporate Network via appropriate firewalls. This practice is warranted because most Corporate Networks are Internet connected and therefore are exposed to external users.

### 4.0 Procedure for Reporting New and Revised Protection Systems

Paragraph 7.1 of this criteria states that Protection system owners shall provide the Task Force on System Protection (TFSP) with advance notification of any of their new bulk power system protection facilities, or significant changes in their existing bulk power system protection facilities. Paragraph 7.2 of this criteria states that Protection system owners shall also provide the TFSP with advance notification of non-member protection facilities as required per NPCC Bylaws . Notification will be made to the TFSP early in the engineering design stage.
4.1 Additional Requirements for Presentation and Review
4.1.1 A presentation will be made to the TFSP on new facilities or a modification to an existing facility when requested by either a member entity or the TFSP.
4.1.2 A presentation will be made to the TFSP when the design of the protection facility deviates from the criteria set forth in this Directory.
4.1.3 A presentation will be made to the TFSP when a member entity is in doubt as to whether a design meets the protection criteria set forth in this Directory.
4.2 Data Required for Presentation and Review of Proposed Protection Facilities
4.2.1 The protection system owner will advise the TFSP of the basic design of the proposed system. The data will be supplied on the "Protection System Review Forms" (formerly C-22 forms) as listed below, accompanied by a geographical map, a one-line diagram of all affected areas, and the associated protection and control function dagrams. A physical layout of protection panels and batteries for the purpose of illustrating physical separation will also be included.

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

## Appendix A

Protection System Details
Line Relaying (Phase)
Line Relaying (Ground)
Transformer/Reactor Relaying
Generator Relaying
Bus Relaying
Shunt Capacitors and Filters Relaying
HVdc Converter Relaying
Special Protection Systems
Communication links
Equipment Details
Current Transformers
Voltage Transformers
Station Battery
Physical Separation
Breakers
Disturbance Monitoring Equipment
Transmission Relay Loadability
Exception Request
4.2.2 The proposed protection system will be explained with due emphasis on any special conditions or design restrictions existing on the particular power system.
4.3 Procedure for Presentation
4.3.1 The protection system owner will arrange to have a technical presentation made to the TFSP
4.3.2 To facilitate scheduling, the chairman of the TFSP will be notified approximately four months prior to the desired date of presentation.
4.3.3 Copies of materials to be presented will be distributed to TFSP members 30 days prior to the date of the presentation.

### 4.4 TFSP Procedures

4.4.1 The TFSP will review the material presented and develop a position statement concerning the proposed protection system. This statement will indicate one of the following:
4.4.1.1 The need for additional information to enable the TFSP to reach a decision.

## Appendix A

### 4.4.1.2 Acceptance of the member statement of conformance to

 the Protection Criteria.4.4.1.3 Acceptance of the submitted proposal
4.4.1.4 Conditional acceptance of the submitted proposal*.
4.4.1.5 Rejection of the submitted proposal*.

* Position Statements 4.4.1.4 and 4.4.1.5 will include an indication of areas of departure from the intent of the protection criteria and suggestions for modifications to bring the protection system into conformance with the NPCC criteria.
4.4.2 The results of the TFSP review will be documented in the following manner:
4.4.2.1 A position statement will be included in the minutes of the meeting at which the proposed protection system was reviewed.
4.4.2.2 If necessary, a letter outlining areas of nonconformance with the protection criteria stipulated in this Directory and recommendations for correction will be submitted to the protection system owner. If necessary, the matter will be brought to the attention of the RCC.
4.4.2.3 The Task Force will maintain a record of all the reviews it has conducted.

Pages 873-893 have been removed due to confidentiality.

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40287

Title: Substation Recloser Replacement

Start Date:	$2011 / 04$
Final Cost Date:	$2011 / 12$
Function:	Transmission
Forecast Amount:	$\$ 3,764,921$

## DESCRIPTION:

This capital item provides for the costs associated with purchasing and installing 104 substation reclosers for use throughout the province.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Outage Performance
Why do this project?
In 2010, a number of substation recloser failures identified that some substation reclosers are reaching the end of their useful life causing a reliability issue. In 2011 reclosers reaching the end of their useful life will be replaced based on their potential effects on reliability.

Why do this project now?
The average age of substation recloser currently in operation is 32 years, corresponding to 1978 manufacture. Life expectancy is in the range of 30 to 35 years. Recently, failures of substation reclosers have occurred at the following locations: 113H- Dartmouth East, 126H-Porters Lake, 131H-Lucasville and 129H-Kearney Lake Road. The associated reliability implications make it necessary to mitigate the issues with this equipment through removal and replacement.

Why do this project this way?
For those models and vintages of reclosers that have recently failed, removal from service and replacement with new equipment ensures improved reliability of NSPI's system.

CI Number : 40287

- Substation Recloser Replacement and Contingency Spares
- 
- 800-Services - Admin.

Budget Version
2011 ACE Plan
Cost Centre : 800

## Capital Item Accounts

Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO			204,253	0	204,253
092		092-Vehicle T\&D OT Labour AO			17,021	0	17,021
094		094 - Interest Capitalized			96,754	0	96,754
095		095-COPS Overtime Labour AO			25,930	0	25,930
095		095-COPS Regular Labour AO			311,156	0	311,156
095		095-COPS Contracts AO			14,639	0	14,639
001	043	001 - T\&D Regular Labour	043 - TP - Substn Dev.		403,104	0	403,104
002	043	002 - T\&D Overtime Labour	043 - TP - Substn Dev.		67,184	0	67,184
011	043	011 - Travel Expense	043 - TP - Substn Dev.		15,000	0	15,000
012	043	012 - Materials	043 - TP - Substn Dev.		2,547,480	0	2,547,480
013	043	013 - COPS Contracts	043 - TP - Substn Dev.		62,400	0	62,400
				Total Cost:	3,764,921	0	3,764,921

Original Cost:

## Approved Date

_

## CI 40287 - Substation Recloser Replacement

The following is a breakdown of costs associated with the Substation Recloser Replacement Project.

Administrative Overhead and Interest	$\$ 669,753$
Materials	$\$ 2,547,480$
Contracts	$\$ 62,400$
COPS Labour	$\$ 470,288$
Other	$\$ 15,000$
Total	$\$ 3,764,921$

The contracted work associated with this project will completed by NSPI personnel at a rate of approximately \$ per person day. The material cost is based on recloser unit costs of $\$ 22,000$ per recloser plus associated accessories.

Reclosers planned for replacement include the following:

1. $58 \mathrm{H}-421$
2. $58 \mathrm{H}-431$
3. $104 \mathrm{H}-411$
4. $104 \mathrm{H}-431$
5. $92 \mathrm{H}-331$
6. $92 \mathrm{H}-332$
7. $92 \mathrm{H}-333$
8. $92 \mathrm{H}-334$
9. $124 \mathrm{H}-301$
10. 1N-402
11. 1N-404
12. 1N-405
13. 7N-301
14. $7 \mathrm{~N}-302$
15. $30 \mathrm{~N}-461$
16. $37 \mathrm{~N}-412$
17. $37 \mathrm{~N}-413$
18. $37 \mathrm{~N}-414$
19. $85 \mathrm{~S}-402$
20. $85 \mathrm{~S}-403$
21. $85 \mathrm{~S}-404$
22. $85 \mathrm{~S}-405$
23. 104S-311
24. 104S-312
25. 104S-313
26.100C-421
26. $25 \mathrm{~W}-303$
27. $88 \mathrm{~W}-311$
28. 88W-321
29. 88W-323
30. $108 \mathrm{H}-411$
31. $108 \mathrm{H}-412$
32. 108H-413
33. 108H-414
34. $101 \mathrm{H}-412$
35. $101 \mathrm{H}-421$
36. 101H-422
37. $101 \mathrm{H}-423$
38. 113H-431
39. 113H-432
40. 113H-433
41. 113H-434
42. 113H-440
43. $113 \mathrm{H}-441$
44. 113H-442
45. $82 \mathrm{~V}-401$
46. $82 \mathrm{~V}-402$
47. $82 \mathrm{~V}-403$
48. $129 \mathrm{H}-412$
49. $129 \mathrm{H}-413$
50. 104H-412
51. 104H-413
52. 100C-422
53. 1C-411
54. 1C-412
55. $22 \mathrm{C}-403$
56. $22 \mathrm{C}-404$
57. 82S-302
58. 82S-303
59. 82S-304
60. $22 \mathrm{~V}-312$
61. 22V-321
62. $22 \mathrm{~V}-322$
63. $22 \mathrm{~V}-323$
64. $63 \mathrm{~V}-311$
$40.63 \mathrm{~V}-312$
65. $63 \mathrm{~V}-313$
66. $18 \mathrm{~V}-411$
67. $18 \mathrm{~V}-412$
68. $18 \mathrm{~V}-413$
69. $21 \mathrm{~W}-311$
70. $21 \mathrm{~W}-312$
71. 70W-321
48.70W-322
72. $93 \mathrm{~V}-312$
$50.93 \mathrm{~V}-313$
73. $25 \mathrm{~W}-301$
74. $25 \mathrm{~W}-302$
75. 104H-430
76. 103H-431
77. $103 \mathrm{H}-432$
78. 103H-433
79. 103H-434
80. 131H-421
81. 131H-424
82. 104H-432
83. 104H-442
84. $131 \mathrm{H}-423$
85. 131H-422
86. $129 \mathrm{H}-411$
87. 104H-441
88. 113H-443
89. $127 \mathrm{H}-411$
90. 2H-412
91. 2H-413
92. 2H-414
93. $62 \mathrm{~N}-414$
94. $62 \mathrm{~N}-415$
95. $62 \mathrm{~N}-416$
100.4C-431
$101.4 \mathrm{C}-441$
102.4C-432
103.73W-411
104.1V-443

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40327

Title: Glen Dhu 138 kV Substation

Start Date:	$2011 / 04$
Final Cost Date:	$2011 / 06$
Function:	Transmission
Forecast Amount:	$\$ 3,200,000$

## DESCRIPTION:

This project provides for costs associated with the construction of a 138 kV three breaker ring substation for the purpose of connecting the Glen Dhu wind farm to the NSPI transmission system.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Capacity
Why do this project?
NSPI is required to access Renewable Energy to meet Nova Scotia’s Renewable Energy Standards. Pursuant to the May 18, 2010 Nova Scotia Utility and Review Board decision NSUARB-NSPI-P-401.37, NSPI is required to repay to Shear Wind Inc. the costs of the network upgrades associated with the Glen Dhu Wind Farm.

Why do this project now?
Repayment of related costs coincides with the in-service date of the Glen Dhu wind farm.

## Why do this project this way?

The Glen Dhu wind farm will be connected to a 138 kV transmission circuit that currently exists between Lochaber Road and Port Hastings. This circuit is an integral part of the NSPI transmission system. The establishment of a 138 kV substation consisting of a three breaker ring will ensure the wind farm can operate during contingencies without causing adverse effects to the NSPI transmission system as well as allowing for greater maintenance flexibility.
Parent CI Number :

Cost Centre : 800

- 800-Services - Admin


## Approved Date

Budget Version 2011 ACE Plan

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
066	003	066 - Other Goods \& Services	003 - TP - Bldg.,Struct.Grnd.	1,000,000	0	1,000,000
066	043	066 - Other Goods \& Services	043 - TP - Substn Dev.	1,200,000	0	1,200,000
066	061	066 - Other Goods \& Services	061-TP - Switched Telecomm. Sys	1,000,000	0	1,000,000
			Total Cost:	3,200,000	0	3,200,000
			Original Cost:			

NOVA SCOTIA UTILITY AND REVIEW BOARDIN THE MATTER OF THE PUBLIC UTILITIES ACT- and -
IN THE MATTER OF A REQUEST by NOVA SCOTIA POWER INCORPORATED and SHEAR WIND INC. to resolve a dispute with respect to the Generator Interconnection Agreement
BEFORE: Peter W. Gurnham, Q.C., Chair
Kulvinder S. Dhillon, P.Eng., Member
Roberta J. Clarke, Q.C., Member
COUNSEL:
NOVA SCOTIA POWER INCORPORATEDNicole Godbout, LL.BDaniel M. Campbell, Q.C.
SHEAR WIND INC.
David MacDougall, LL.B
Matthew Clarke, LL.B
James MacDuff, LL.B.
APPLICATION DATE: December ..... 18, 2009
FINAL SUBMISSIONS: April 30,2010
DECISION DATE: ..... May 18, 2010
DECISION:

Shear Wind Inc. is entitled to fully recover the costs of the BUS in accordance with the GIA.

## TABLE OF CONTENTS

I INTRODUCTION ..... 3
II OVERVIEW ..... 5
III NETWORK UPGRADE ..... 7
IV AMHERST DECISION ..... 8
V IS SHEAR WIND RESPONSIBLE FOR THE THREE RING BUS? ..... 9
The BUS is a Network Upgrade ..... 9
Is Shear Wind entitled to recover the cost of the BUS? ..... 11
Provisions of the GIA ..... 11
Applicability of FERC Order 2003-C ..... 13
Effect of PPA ..... 16
Board's Findings in Amherst ..... 21
Will Shear Wind Enjoy Double Recovery? ..... 21
Provisions of PPA ..... 21
VI CONCLUSION ..... 25

## I INTRODUCTION

[1] Nova Scotia Power Incorporated ("NSPI"), in a letter dated December 18, 2009, requested the Nova Scotia Utility and Review Board ("the Board") to resolve a dispute between NSPI and Shear Wind Inc. ("Shear Wind") with respect to the Generator Interconnection Agreement ( the "GIA"). The Board's role in this matter is defined in NSPl's, Board approved, Open Access Transmission Tariff ("OATT"), which states that disputes relating to the GIA can be reviewed by the Board following a process set out in the OATT.

On December 4, 2009, NSPI provided the draft GIA to Shear Wind and on the same day, Shear Wind requested that the unexecuted GIA be filed with the Board pursuant to Sections 11.2 and 11.3 of the Generation Interconnection Procedures ("GIP") [3] The Board set out directions on procedures as agreed between the parties in a letter dated January 5, 2010.
[4] The Board issued a decision [NSUARB-NSPI-P-401.36] with respect to a dispute between NSPI and Amherst Wind Power LP (the "Amherst Decision") on January 7, 2010. As a result, Shear Wind requested two extensions to the times noted in the directions on procedure which were granted by the Board as follows:

Shear Wind Inc.'s Argument
NSPI's Response to Shear Wind Inc. 's Argument IRs issued by Parties and Board Responses to IRs Final Submissions

January 22, 2010
February 5, 2010
February 12, 2010
February 22, 2010
March 4, 2010 reference to provisions of the PPA in support of their argument. The PPA in its entirety was filed in confidence pursuant to the Board Regulatory Rules. The Board advised the parties, by letter dated April 1, 2010, that in order to provide a decision which fully explained its reasons, the Board felt it would need to disclose relevant provisions of the PPA and the associated arguments of the parties. In a preliminary hearing on April 30, 2010, Shear Wind and NSPI agreed that for purposes of facilitating this decision, they would waive the confidentiality associated with Sections 5.3 (a) and (d) of the PPA and their associated arguments. NSPI's position was that this waiver was for purposes of this decision only and it reserves the right to take a different position in future proceedings involving this or any other PPA.
[6] The following is the summary of the Board's findings in this matter, for reasons which are set out later in this Decision:
a) Shear Wind is entitled to fully recover the costs of the three breaker ring substation ("BUS").
b) Shear Wind is not required to take transmission service to recover the BUS costs.
c) Appendix "A" to the proposed GIA is amended to include the BUS as a Network Upgrade as agreed by the Parties.

## II

OVERVIEW

Shear Wind is developing a wind farm known as the Glen Dhu Project in Antigonish County, Nova Scotia to supply electric power to NSPI. It entered into negotiations with NSPI to interconnect its wind generating facility with NSPI's 138 kV transmission line (L-6511) between Trenton and Lochaber, Nova Scotia.
[8] After the completion of various required studies, NSPI and Shear Wind proceeded to the negotiation of a GIA, based on the standard form approved by the Board as part of the OATT. NSPI, in its letter dated December 18, 2009, stated that:
... Shear Wind and NSPI have completed the required steps of the interconnection process and are at the final stage of negotiating a GIA, the last stage before interconnection.
[Exhibit $\mathrm{N}-1(\mathrm{C})$, p. 1]
[9] As of December 18, 2009, the parties reached agreement on all but two
points. Shear Wind advised NSPI that it disagreed with:

1. The location of the Point of Interconnection [POI] as identified in Appendix $A$ of the GIA: and
2. The proposal that the 138 kV three breaker ring substation and related equipment should be deemed Transmission Provider's Interconnection Facilities rather than Network Upgrades in Appendix A of the GIA.
[Exhibit $\mathrm{N}-1$ (C), p. 4]
[10] When parties are unable to agree to a proposed GIA, ss. 11.2 and 11.3 of the GIP provide that:

### 11.2 Negotiation

Notwithstanding Section 11.1, at the request of the Interconnection Customer the Transmission Provider shall begin negotiations with the Interconnection Customer concerning the appendices to the GIA at any time after the Interconnection Customer executes the Interconnection Facilities Study Agreement. The Transmission Provider and the Interconnection Customer shall negotiate concerning any disputed provisions of the
appendices to the draft GIA for not more than 60 Calendar Days after tender of the final Interconnection Facilities Study Report. If the Interconnection Customer determines that negotiations are at an impasse, it may request termination of the negotiations at any time after tender of the GIA pursuant to Section 11.1 and request submission of the unexecuted GIA with the Board or initiate Dispute Resolution procedures pursuant to Section 13.5.

### 11.3 Execution and Filing

...The Interconnection Customer shall either: (i) execute two originals of the tendered GIA and return them to the Transmission Provider; or (ii) request in writing that the Transmission Provider file with the Board an (sic) GIA in unexecuted form. As soon as practicable, but not later than ten Business Days after receiving either the two executed originals of the tendered GIA (if it does not conform with a Board-approved standard form of interconnection agreement) or the request to file an unexecuted [GIA], the Transmission Provider shall file the GIA with the Board, together with its explanation of any matters as to which the Interconnection Customer and the Transmission Provider disagree and support for the costs that the Transmission Provider proposes to charge to the Interconnection Customer under the GIA. An unexecuted GIA should contain terms and conditions deemed appropriate by the Transmission Provider for the Interconnection Request. If the Parties agree to proceed with design, procurement, and construction of facilities and upgrades under the agreed-upon terms of the unexecuted GIA, they may proceed pending Board action.
[2005 NSUARB P-880, Exhibit 2 of Exhibit N-1]
[11] NSPI requested the Board to confirm the unexecuted GIA attached to its
letter of December 18, 2009.
[12] Shear Wind requested the Board to modify the GIA by:

1. The location of the POI that is proposed by NSPI be rejected in favour of a location that is on the Shear Wind facility side of the proposed three breaker ring bus. Shear Wind submits that the appropriate location for the POI is at the terminals on the NSPI side of Switch 93N-661. The granting of this relief would require that NSPI be directed to revise Section 1 of Appendix "A" of the unexecuted GIA (titled "Interconnection Facilities") and to revise the One Line Diagram at Schedule A to Appendix " C " of the unexecuted GIA, in order to reflect the revision to the location of the POI ;
2. The classification of the 138 kV three-breaker ring bus substation and related equipment as "Transmission Provider's Interconnection Facilities" be rejected and that this infrastructure instead be classified as "Network Upgrades". The granting of this relief would require that NSPI be directed to recategorize the individual items of equipment currently listed under Section 1(b) of Appendix "A" of the unexecuted GIA (titled Transmission Providers' Interconnection Facilities") as "Network Upgrades" by instead listing those items under Section 2 of Appendix "A" of the unexecuted GIA (titled "Network Upgrades"); and
3. The Board provide written confirmation that the effect of the foregoing relief is that Shear Wind shall be entitled to recover all amounts advanced with respect to Network Upgrades in accordance with GIA Section 11.4.1, which provides that full reimbursement of such
amounts shall occur no later than 20 years following the Commercial Operation Date of the Generating Facility.
[Exhibit N-2, p. 3]

In its February 5, 2010 response to Shear Wind's January 22, 2010 submission NSPI noted, among other items, based on the Amherst Decision, that the BUS is a Network Upgrade and the only unresolved issue is whether Shear Wind is entitled to a refund of the interconnection costs associated with the BUS. NSPI argued that these costs are not refundable:

There are three key reasons why the Board should reject Shear Wind's approach on this issue:

1. The Board has already determined that the Shear Wind approach could result in a double recovery from NSPI customers;
2. The specific language of the Shear Wind PPA reinforces that Shear Wind was responsible for all interconnection costs; and
3. Shear Wind made a separate agreement to be responsible for interconnection costs.
[Exhibit $\mathrm{N}-16$, p. 3]
[14] The Board understands that both parties agree that the BUS is required and is a part of the Network Upgrade as defined in the GIA. The only question for the Board to decide is who pays for the BUS.
[15] The Board is of the opinion that, based on the evidence before it in this case, Shear Wind is entitled to recover the cost of the BUS, which both parties have agreed is a Network Upgrade.

## III NETWORK UPGRADE

[16] To transport energy to customers, every power generating facility needs to connect to the transmission system. The type and nature of the interconnection facility
depends upon the size and location of the generating facility and point of interconnection on the transmission line. The GIP/GIA provide the process which the Independent Power Producer (IPP) is required to follow. The costs of the interconnection facilities are to be allocated between NSPI and the IPP.

Generally, the IPP is financially responsible for all interconnecting facilities required by the transmission provider except the Network Upgrades.

The Network Upgrades are defined as the facilities upgrades required beyond the point of interconnection and are designed and built by the transmission provider. In cases where the IPP funds the Network Upgrades, it is entitled to a refund of all amounts advanced for Network Upgrades.

Both NSPI and Shear Wind have submitted that the BUS is required in this case and is a part of the Network Upgrades.

## IV AMHERST DECISION

[20] In the Amherst Decision, the Board was required to make findings on the appropriateness of the POI, whether the BUS was required, and if so, whether it was a Network Upgrade, and whether Amherst was entitled to recover the costs, among other issues.
[21] The Board found that the BUS was required, and Amherst was allowed to recover part of the cost of the BUS as a Network Upgrade.

In that proceeding, the Board understood that Amherst had applied to NSPI for interconnection to the L-6535 transmission line, an interprovincial line between Nova Scotia and New Brunswick. The Board also understood that initially, NSPI proposed to connect Amherst's generating facility with a double switch arrangement, and this arrangement was used to prepare NSPI's interconnection cost estimate as provided to Amherst. It was clear that very late in the process (and after input from New Brunswick Power), the interconnection requirements were changed by NSPI to the BUS due to the status of the line and the impact on current customers.

In the Amherst Decision, the Board found the BUS to be a Network Upgrade because of its benefit to both the generating facility and customers in Nova Scotia and New Brunswick. The Board also found that Amherst would not be responsible for the additional costs resulting from the change from the double switch to the BUS.
[24] The Board makes the clarification that, unlike the situation in the Amherst proceeding, in this matter the Board is not required to make a finding on whether the BUS is required or whether it is a Network Upgrade, because the parties have already agreed upon these points.

## V IS SHEAR WIND RESPONSIBLE FOR THE THREE RING BUS?

## The BUS is a Network Upgrade

[25] In its initial filing (Exhibit N-1), NSPI identified one of the issues of disagreement between the parties as the characterization of the BUS. In Appendix A of
the unexecuted GIA, it appeared as Transmission Provider's Interconnection Facilities, while Shear Wind maintained it is a Network Upgrade. As noted, the Board was advised after the initial filing that NSPI had conceded that the BUS is a Network Upgrade.
[26] Notwithstanding this concession, the Board understands that the following issues raised by NSPI in its initial filing, should the BUS be determined to be a Network Upgrade, remain outstanding:

1. Does Shear Wind remain responsible for the costs associated with the three breaker ring substation?
2. Is Shear Wind eligible for a refund under Section 11.4.1 of the GIA as there are no Transmission Service charges associated with the Generating Facility under the PPA?
3. Do the energy costs in the PPA include Shear Wind's cost of the Interconnection Facilities?

NSPI concludes that if Shear Wind is entitled to a refund of the cost of the Network Upgrades, unless the Energy costs in the PPA are reduced, Shear Wind will enjoy double recovery at the expense of the ratepayers.
[28] As support for its submissions, NSPI relies on the Board's Amherst Decision, on the provisions of the Request for Proposals ("RFP"), and the PPA.
[29] Shear Wind takes the position that as the BUS is agreed to be a Network Upgrade, the provisions of 11.4 of the GIA make it clear that Shear Wind as the Interconnection Customer is not responsible for the costs. Based on FERC Order 2003-C (Exhibit $\mathrm{N}-14$ ), it claims that it is entitled to a refund, whether or not it takes transmission service. Shear Wind says that the special provisions of the PPA reinforce the primacy of
the GIA. Shear Wind argues that NSPI is not legally able to deviate from the Board approved GIA, created under the OATT. Counsel for Shear Wind distinguishes the Amherst Decision.

Shear Wind argues that if it does not receive a refund of the cost of the Network Upgrades, it will in fact experience an "under-recovery" of its costs.
[31] The parties have agreed that the BUS is not a sole use facility; in other words, there are benefits flowing to the transmission system as a whole from the installation of the BUS in the Shear Wind project.
[32] Since the parties have agreed that the BUS is a Network Upgrade, the Board need not make a finding on this issue. The Board accepts, for the purposes of this Decision only, that it is a Network Upgrade. However, this will not bind the Board in future matters where, for example, there may be disagreement on the classification of any component of the interconnection facilities.

## Is Shear Wind entitled to recover the cost of the BUS?

For the reasons which follow, the Board finds that Shear Wind is entitled to recover the cost of the BUS.

## Provisions of the GIA

[34] The GIA establishes, inter alia, the cost responsibilities of the parties. Under
Section 11.3 of the GIA, the Interconnection Customer (Shear Wind in this case) is
required to solely fund Network Upgrades, unless the Transmission Provider or Transmission Owner elects to fund them.
[35] Under the terms of Section 11.4.1 the Interconnection Customer is entitled
to repayment for the costs of the Network Upgrades. It states:

### 11.4.1 Refund of Amounts Advanced for Network Upgrades

Interconnection Customer shall be entitled to a cash repayment, equal to the total amount paid to Transmission Provider and Affected System Operator, if any, for the Network Upgrades, to be paid to Interconnection Customer on a dollar-for-dollar basis for the nonusage sensitive portion of transmission charges, as payments are made under Transmission Provider's Tariff and Affected System's Tariff for transmission services with respect to the Generating Facility. Any repayment shall include interest from the date of any payment for Network Upgrades through the date on which the Interconnection Customer receives a repayment of such payment pursuant to this subparagraph. Interconnection Customer may assign such repayment rights to any person.

Notwithstanding the foregoing, Interconnection Customer, Transmission Provider, and Affected System Operator may adopt any alternative payment schedule that is mutually agreeable so long as Transmission Provider and Affected System Operator take one of the following actions no later than five years from the Commercial Operation Date:
(1) return to Interconnection Customer any amounts advanced for Network Upgrades not previously repaid, or
(2) declare in writing that Transmission Provider or Affected System Operator will continue to provide payments to Interconnection Customer on a dollar-for-dollar basis for the non-usage sensitive portion of transmission charges, or develop an alternative schedule that is mutually agreeable and provides return of all amounts advanced for Network Upgrades not previously repaid; however full reimbursement shall not extend beyond (20) years from the Commercial Operation Date.

If the Generating Facility fails to achieve commercial operation, but it or another Generating Facility is later constructed and makes use of the Network Upgrades, Transmission Provider and Affected System Operator shall at that time reimburse Interconnection Customer for the amounts advanced for the Network Upgrades.
[Exhibit $\mathrm{N}-1$ (C), pp. 69-70]

RFP and Shear Wind's Response to the RFP, the NSPI responses to Clarifying Questions, and correspondence between the parties. The Board will, however, address the provisions of the PPA as they relate to the provisions of the GIA later in this Decision.
[37] The Board finds that under the GIA, the Interconnection Customer is required, unless the Transmission Provider elects otherwise (which NSPI has not done in this instance), to pay the "up front" costs of the Network Upgrades. Once paid, the Interconnection Customer is entitled to recover the costs from the Transmission Provider by either the method set out in 11.4.1 or any other mutually satisfactory method.

## Applicability of FERC Order 2003-C

NSPI submitted that Section 11.4.1 of the GIA only permits repayment of the
cost of Network Upgrades where the Interconnection Customer takes transmission
services. Counsel for NSPI submitted:
In accordance with the PPA, NSPI will take ownership of energy generated by Shear Wind at the Delivery Point (i.e. at the interface of the wind farm and the NSPI transmission system). Costs advanced for a Network Upgrade are not reimbursed pursuant to section 11.4.1 because these costs are the responsibility of the Seller under the 2007 RFP and PPA. Further, no payments are made for Transmission Service with respect to this Generating Facility. There is no Transmission Tariff Payment, and as such, section 11.4.1 does not apply.

Shear Wind argues that the FERC decision in the Niagara Mohawk case ought to be followed by the UARB. The Niagara Mohawk case determined that in FERC jurisdictions, even if an Interconnection Customer does not take Transmission Service, it is entitled to receive a refund pursuant to section 11.4.1. As stated above, FERC jurisprudence is informative and instructive but does not create a binding precedent in Nova Scotia. As the Board did in the Amherst Decision, FERC decisions should be placed in the context of the circumstances in Nova Scotia. In particular, applying the FERC decision in Niagara Mohawk to the Shear Wind GIA would result in a double recovery for Shear Wind. NSPI customers would pay twice for Shear Wind's interconnection to the system.
[Exhibit $\mathrm{N}-16$, p. 4]

Section 11.4.1 of the GIA clearly provides that an Interconnection Customer is entitled to a cash repayment, equal to the total amount paid to the Transmission Provider for any Network Upgrades that the Interconnection Customer may be required to fund, plus interest from the date of payment until the date of repayment. The right of an Interconnection Customer to receive reimbursement for Network Upgrade advances is further confirmed by Section 12.2.2 of the GIP, which states in the first sentence of its last paragraph that the "Transmission Provider will refund to the Interconnection Customer both the expediting costs and the cost of Network Upgrades, in accordance with Article 11.4 of the GIA".

NSPI is of the mistaken view that an Interconnection Customer must take transmission service from NSPI in order to be eligible to receive reimbursement for the amounts it advances with respect to Network Upgrades. Shear Wind respectfully submits that NSPl's position confuses two separate elements contained in GIA Section 11.4.1. The first of these elements is the mechanics of the reimbursement (i.e., whether the costs advanced by the Interconnection Customer are to be reimbursed in connection with transmission services versus alternative payment arrangements by no later than the end of 20 years) and the second is the actual entitlement to the reimbursement of these costs. As such, with respect to the question of Shear Wind's entitlement to reimbursement for these costs, it is entirely irrelevant whether it will be taking transmission service - this factor affects only the mechanics of the reimbursement.

Section 11.4.1 provides that the Interconnection Customer's advances for Network Upgrades must be fully repaid no later than twenty years following the Generating Facility's Commercial Operation Date, regardless of the extent or manner of any prior repayments it may have received. The requirement for full reimbursement of the Interconnection Customer by this outside date applies regardless of whether or not any repayments have been made with respect to transmission credits arising from the transmission services associated with the Generating Facility...
[Exhibit N-2, pp. 14-15]
[40] NSPI, while recognizing that the Board has in previous decisions noted that FERC jurisprudence is "informative and instructive" but not binding precedent, urged the Board to place "FERC decisions ... in the context of the circumstances in Nova Scotia". (Exhibit N-16, page 4).

The version of GIA Section 11.4.1 that formed the basis of FERC's findings above is the same version that is found in the existing Board-approved GIA. As noted above, as part of the development of the Consensus Proposal, NSPI agreed to adopt the FERC approach to the repayment of Interconnection Customers' capital contributions to Network Upgrades. In doing so, it adopted verbatim the language of Section 11.4.1 of the FERC pro forma GIA. Shear Wind submits that the foregoing FERC interpretation of Section 11.4.1 should be followed by the Board in applying this provision of the GIA in the Nova Scotia context.
[Exhibit N-2, p. 16]

The Board finds FERC jurisprudence instructive on this point. The Board has difficulty in finding anything "in the context of the circumstances in Nova Scotia" which would lead the Board to reach a conclusion contrary to the FERC finding on this issue. As Shear Wind has identified, in the Nova Scotia market, NSPI as Transmission Provider enjoys "near monopoly over generation". Indeed, the Board accepts Shear Wind's position that a primary purpose of the GIA is to ensure that "...transmission facility owners do not discriminate against independent generators...", and that there is "...prevention of undue discrimination by the Transmission Provider". (Exhibit N-2, pp 16-17)
[44] In the circumstances, the Board accepts that as stated by Shear Wind:
The GIP and GIA must be interpreted and applied in a proper manner if these regulatory instruments are to achieve the goal of creating a predictable, fair and standardized procedure for the interconnection of IPP generation to the Nova Scotia grid...
[Exhibit N-2, p. 17]

The Board, therefore, finds that Shear Wind is entitled to repayment of the costs of Network Upgrades whether or not transmission service is taken.

## Effect of PPA

The parties entered into a PPA on April 1, 2008. This was executed after several months of negotiation between the parties on the terms, including Special Provisions. Those Special Provisions modified the standard PPA.

NSPI points to Section 14.9 of the PPA which states that:

### 14.9 Complete Agreement

> All previous communications or agreements between the Parties, whether verbal or written, with reference to the subject matter of the PPA are superseded by the PPA and the PPA constitutes the entire agreement between the Parties with respect to such subject matter. The PPA shall not be amended or supplemented except by subsequent written agreement between the Parties. [Emphasis added]
[Exhibit $\mathrm{N}-18$, p. 5]

The Board is of the opinion that the "subject matter" of the PPA is the agreement for Shear Wind to construct the facility, and sell and deliver energy to NSPI, and NSPl's agreement to purchase and take delivery of the Net Output (PPA, Article 4.1). [49] The Board also notes that Section 14.9 of the PPA refers to previous communications. The draft GIA was not presented to Shear Wind until September 25, 2009, more than a year after the date the PPA was executed. NSPI takes the position that the previous documents (i.e., the RFP, Response of Shear Wind to the RFP, and the Feasibility Study) all contemplate Shear Wind being responsible for all interconnection costs. The Board notes that the term "interconnection costs" is not, however, defined.

NSPI says that the BUS was always included in the facility requirements; therefore its cost is part of the interconnection costs for which Shear Wind is responsible.
[50] Shear Wind says that NSPI is bound "as a matter of regulatory law" to comply with the terms of the GIA, and further that the RFP documentation "expressly provided that interconnections of the successful projects would be conducted in accordance with the GIP/GIA, and specifically indicated that interconnection cost responsibilities would be those established by the GIA". (Exhibit N-19, page 2)
[51] The Board notes that there is no primacy or paramountcy clause in either the PPA or the GIA which would give either of these agreements priority over the other in the event of a discrepancy. A review of the provisions of both documents leads the Board to conclude that they co-exist, each being the final word on their respective subject matters. [52] However, the parties see the documents differently. NSPI sees the PPA as the final word on the entire interconnection project, the culmination of all of the previous documents, including the RFP and Response, the various Studies, and all other communications. NSPI acknowledges the Special Provisions which were negotiated as modifications to the PPA, but takes the view that they reinforce the position it advances. [53] Shear Wind takes the position that the additional wording inserted in Paragraph 5.3(a) of the PPA makes the PPA subordinate or subject to the GIA, making the provisions of the GIA the final determinant on this issue. Paragraph 5.3(a) provides:

### 5.3 Interconnection Costs

(a) Subject to section $5.3(\mathrm{~d})$, the costs of interconnecting the Facility to the System are the responsibility of the Seller. Such costs comprise all costs incurred by NSPI (as computed in accordance with the normal accounting
procedures of NSPI) that are directly related to the interconnection of the Facility to the System consistent with Good Utility Practice and include the costs of any Interconnection Study or Optional Interconnection Study (as defined in the Generator Interconnection Agreement, installation of equipment, metering, and all incremental modifications to the System (to the extent that such modifications are for the sole benefit of the Facility and are necessary to interconnect the Facility to the System).
[Exhibit N-2(C), Tab 4, General Terms and Conditions, p. 17]
36. At the end of the first sentence of section 5.3(a), the following words shall be inserted:
"in accordance with the Generator Interconnection Agreement." [Emphasis added]
[Exhibit N-2, Tab 4, Special Provisions, p. 6]

NSPI 's position on the insertion of the words from Special Provision 36 is set
out in their submission of February 5, 2010, stating:

Contrary to Shear Wind's argument, the additional language reinforces that the parties understood that the Interconnection Customer would be responsible for all interconnection costs. The relevant phrase is "in accordance with" the GIA. The use of the words "in accordance with" shows that the parties intended that the reference to the GIA would be consistent with the preceding words "the costs of interconnecting the Facility to the System are the responsibility of the Seller ..." and the words that follow which state, "Such costs shall comprise all costs incurred by NSPI....".
[Exhibit $\mathrm{N}-15(\mathrm{C})$, p. 6]

Shear Wind's position on this point is set out in its January 22, 2010,
submission rejecting NSPI's interpretation:

The effect of the foregoing provision, as amended, cannot be clearer: Shear Wind's cost responsibilities for the interconnection of the Glen Dhu Project are those expressly provided for in the GIA. The foregoing provision does not provide, as NSPI apparently believes, that Shear Wind's responsibilities are to be determined in accordance with all those provisions of the GIA other than those that provide for the reimbursement of advances for Network Upgrades. Rather, the Glen Dhu PPA provides that Shear Wind is entitled to recover its advances for Network Upgrades as provided for by the GIA, just as it is responsible to bear all of the interconnection costs that are properly imposed upon it by that document.


#### Abstract

The reference in the second sentence of Section 5.3(a) to Shear Wind being responsible for "all costs incurred by NSPI... that are directly related to the interconnection of the Facility" must necessarily be read in conjunction with the first sentence, which expressly states that Shear Wind's responsibilities are those established by the GIA. In interpreting this provision, it is important to bear in mind that under the GIA, an Interconnection Customer's responsibilities in reiation to Network Upgrades costs involve the up-front payment of these costs, although they are to be later reimbursed to the Interconnection Customer. The Interconnection Customer is therefore "responsible" for the payment of all interconnection costs, subject to its right of subsequent reimbursement for Network Upgrade advances. Its responsibility to pay these upfront costs does not diminish the Interconnection Customer's right to subsequent reimbursement under the GIA. [Emphasis added]


[Exhibit N-2(C), p. 6]

Shear Wind submits that Section 5.3(a) of the Glen Dhu PPA is unambiguous and makes abundantly clear that Shear Wind's interconnection cost obligations are to be those expressly provided for in the GIA. However, NSPI's argument at the bottom of page 6 of its February 5 submission regarding this point requires comment. In the last paragraph on page 6, NSPI argued that the addition of the underlined and bolded words above somehow "reinforces that the parties understood that the Interconnection Customer would be responsible for all interconnection costs". Shear Wind fails to understand how this conclusion could be reached on any reasonable reading of those plain and unambiguous words, but in any event, NSPI's argument is particularly untenable in light of Shear Wind's response to NSPI IR-3(b) and Confidential Exhibits 15 to 23, attached thereto. [Emphasis added]
[Exhibit N-19, p. 4]

The Board is satisfied that the wording of Section 5.3(a) allows it to safely conclude that this provision of the PPA is subject to the provisions of the GIA. Therefore, the Board finds that Section 11.4.1 is the relevant section to determine the entitlement of Shear Wind to repayment for the costs of the Network Upgrade. The Board does not find it necessary to consider whether, absent the terms of Special Provision 36, the same conclusion would apply.
[59] However, it is necessary to consider whether there is anything else in the provisions of the PPA which might lead the Board to find otherwise. This requires the

# Board to consider the submissions of NSPI regarding Section 5.3(d) of the PPA. NSPI 

submitted that:

It is also significant that sub-clause 5.3(a) starts with the modifier "Subject to section $5.3(\mathrm{~d})$
". The provisions of section $5.3(\mathrm{~d})$ provide a specific approach to how a Seller seeks an alternate means of recovery of its interconnection costs from NSPI Sections 5.3(a) and (d) together recognize that the interconnection costs are to be recovered through the Energy Rate and the PPA. This is clearly the manner in which the parties understood that a recovery of interconnection costs would occur, and not through the 11.4 .1 mechanism. Specifically, if the Shear Wind responsibility for interconnection costs were to be reduced, there would be a corresponding reduction in the Energy price so that customers do not pay twice for interconnection. This is the deal that the Seller negotiated.

Section 5.3(d) ensures that all RFP bids competed on the same footing. Shear Wind suggests that in negotiating the additional words at section 5.3(a), it has somehow obtained the right to receive a refund under section 11.4.1, without a corresponding reduction in Energy Rate. This is contrary to the express wording of section 5.3(d). To interpret section 5.3(a) as Shear Wind proposes would mean that NSPl's customers will pay significantly more for Shear Wind's energy than what was originally contracted, and that its PPA bid competed on different grounds than the other Independent Power Producers. This is not the case. [Emphasis added]
[Exhibit $\mathrm{N}-15(\mathrm{C})$, p. 7]
[60] In this particular PPA, it is essential to note that Section 5.3(d) is completely different from the standard PPA wording. It is in fact set out in full in the Special Provisions negotiated by the parties and provides:
38. Section 5.3(d) shall be deleted in its entirety and replaced with the following:
"The Seller shall have the option, exercisable in its sole discretion, within thirty (30) days after final determination of its interconnection costs, to provide notification (the "Interconnection Cost Notice") to NSPI that it desires for NSPI to assume such costs. As part of the Interconnection Cost Notice, the Seller will provide the final determination of its interconnection costs and the amount by which it proposes the Energy Rate will be reduced on the assumption that such costs will be assumed by NSPI. NSPI shall have a period of fifteen (15) days in which to advise the Seller if it agrees to assume the interconnection costs and accept the proposed reduced Energy Rate. If NSPI does not advise the Seller within the said (15) day period then NSPI will be deemed to have declined to assume the interconnection costs and the reduced Energy Rate." [Emphasis added]
[Exhibit N-2, Tab 4, Special Provisions, p. 6]

The Board will address these provisions below as they have a direct impact on the issue of whether Shear Wind will enjoy "double recovery" as alleged by NSPI.

## Board's Findings in Amherst

Before leaving this issue, the Board finds it necessary to make some additional comments on the relevance of the Amherst Decision to this proceeding. The Amherst matter presented a very different fact situation than the present case. As noted earlier in this Decision, the parties there did not agree that the BUS in that case was a Network Upgrade, and the Board was required to make a finding on that point, in the unique circumstances of the location of the facility and interconnection to a major interprovincial transmission line.
[63] Further, in the Amherst Decision, the Board did not consider the RFP or the PPA in any depth. The Board is not able to comment on whether the PPA in this case and the Amherst PPA contained similar provisions.

## Will Shear Wind Enjoy Double Recovery?

Provisions of PPA
NSPI argued that if Shear Wind is allowed to receive a repayment of the costs of the BUS as a Network Upgrade it will have a "double recovery" of those costs. The reason for this is, in NSPl's view, that the costs of the BUS were included in the financial projections provided by Shear Wind, and in its calculation of the energy bid in its
response to the RFP. NSPI says that Shear Wind will recover those costs through the PPA. As set out in paragraph [59] above, in support of its position, NSPI pointed to the fact that section 5.3(a) of the PPA, as amended by Special Provision 36 is subject to Section 5.3(d) of the PPA. Shear Wind responded to NSPI by stating:

In the second paragraph of page 7 of NSPI's February 5 submission, NSPI argues that if Section 5.3(a) of the Glen Dhu PPA is interpreted as Shear Wind proposes ... then:
"NSPI's customers will pay significantly more for Shear Wind's energy than what was originally contracted, and that its PPA bid competed on different grounds than the other Independent Power Producers".

Shear Wind submits that this characterization is incorrect and illogical. Firstly, provided Section 5.3(a) of the Glen Dhu PPA is properly interpreted (i.e., in accordance with its express, plain language), NSPI's customers will pay exactly the rate that NSPI contracted for. NSPI negotiated and executed the Glen Dhu PPA with this revised provision and NSPI is contractually obligated to comply with it.

Secondly, Shear Wind did not "compete on grounds other than the other Independent Power Producers". Shear Wind responded to the same 2007 RFP as the other IPPs and complied with all of its stated requirements. One of these was to identify which of the Standard PPA provisions it would seek to revise if its bid was selected. As discussed in detail elsewhere, Shear Wind made clear in its RFP bid that it would require revisions to Section 5.3(a) of the Standard PPA in order to more specifically address the question of the PPA's allocation of costs related to system modifications that "benefit NSPI or other parties" (i.e., Network Upgrades). Shear Wind's bid was selected by NSPI and the parties subsequently negotiated a change to Section 5.3(a) which addressed Shear Wind's concern in this regard. Shear Wind fails to see how a PPA amendment freely entered into by NSPI several months following the submission of RFP bids amounts to Shear Wind having "competed on different grounds than the other Independent Power Producers". The negotiation process that was undertaken by the parties was fully compliant with the 2007 RFP ...
... while it is not Shear Wind's position that its rights to reimbursement for Network Upgrades under the GIP/GIA are any different than the rights of other IPPs, the foregoing nevertheless makes clear that the PPA negotiation process that it engaged in with NSPI was expressly provided for by the terms of the 2007 RFP.

Moreover, it is Shear Wind's position that ... the GIP/GIA (which applies to all IPPs seeking interconnection in Nova Scotia) clearly requires that all Interconnection Customers be reimbursed for the full amount of any advances they make with respect to Network Upgrades.

Shear Wind also notes that its RFP bid was submitted in response to the 2007 RFP documentation which expressly provided that interconnection cost responsibilities for projects selected in that process would be those established by the GIA ...
... Shear Wind fundamentally disagrees with NSPI that its customers will overpay if Shear Wind recovers its advances for Network Upgrade costs. The very concept of Network Upgrades inherently describes facilities which provide system-wide benefits. The system benefits of the three breaker ring buses required by NSPI for the interconnection of the Amherst and Glen Dhu Projects have been thoroughly canvassed and established in the two respective GIA proceedings. It is entirely appropriate that the costs of these Network Upgrades be borne by rate-payers, as these costs relate to infrastructure that benefits the NSPI transmission system (and thus benefits NSPI rate-payers generally). As previously noted, an underlying purpose of the GIP/GIA regime is to protect individual interconnection Customers from being forced to bear inappropriate costs (including Network Upgrade costs), and thus to prevent undue discrimination by Transmission Providers such as NSPI. Shear Wind submits that it cannot be correct, as asserted by NSPI, that NSPI customers will over-pay as a result of the Glen Dhu Project being interconnected in accordance with the approved regulatory regime that governs such interconnections, and in accordance with the commercial arrangements that have been freely entered into by NSPI. In fact, the adoption of NSPl's position would result in Shear Wind bearing $100 \%$ of the cost of facilities that are required by NSPI to provide system benefits beyond those required to interconnect the Glen Dhu Project. This is the exact situation that the GIP/GIA concept of Network Upgrades is intended to protect against. [Emphasis added]
[Exhibit $\mathrm{N}-19(\mathrm{C})$, pp. 6-8]


#### Abstract

Shear Wind negotiated specific changes to Section 5.3(d) of the Standard PPA which fundamentally alter its operation. Section 5.3(d) of the Standard PPA provides that NSPI would have the option, after the final determination of the Seller's interconnection costs, to reduce the Energy Rate in proportion to the amount of the Seller's responsibility for interconnection costs. However, the version of Section 5.3(d) negotiated by Shear Wind for the Glen Dhu PPA provides for the opposite scenario. That is, Section 5.3(d) of the Glen Dhu


PPA provides that Shear Wind, not NSPI, has the option to give notice that it wishes NSPI to take responsibility for Shear Wind's interconnection costs and to reduce the Glen Dhu PPA Energy Rate by an amount which is to be proposed by Shear Wind. Furthermore, unlike the version of Section 5.3(d) contained in the Standard PPA, the Glen Dhu PPA version of the clause provides that it is Shear Wind that has the right to make the final determination of Shear Wind's interconnection costs.
... Shear Wind successfully negotiated changes to the Glen Dhu PPA which ensured that interconnection costs would be properly allocated between the parties.

NSPI also argued ... that "Section 5.3(d) ensures that all RFP bids competed on the same footing". This latter statement that Section 5.3(d) puts all RFP bidder on the same footing surely cannot be correct given, as NSPI stated ... that "Paragraph 5.3(d) is also not contained in the standard form PPA nor in Amherst's PPA". Further, as noted above, the version of Section 5.3(d) negotiated by the parties in the Glen Dhu PPA is fundamentally different than the version that is contained in the Standard PPA, and therefore it is difficult to see how it can result in "ensuring that all RFP bids competed on the same footing".

NSPI claims ... that it "is significant that subclause 5.3(a) starts with the modifier "Subject to section 5.3 (d)...". Shear Wind suggests that this is not particularly significant wording at all, but rather represents common legal drafting practice that is intended to alert the reader to the inter-operative nature of specific provisions in an agreement. Rather, the significant aspects of Sections $5.3(\mathrm{a})$ and $5.3(\mathrm{~d})$ of the Glen Dhu PPA relate to the fact that Shear Wind obtained specific changes to the Standard PPA that ensured that it would remain protected from any attempt by NSPI to improperly impose system modification/Network Upgrade costs on it.

NSPI also asserts ... that submission that "Sections 5.3(a) and (d) together recognize that the interconnection costs are to be recovered through the Energy Rate and the PPA." This is simply not the case. As noted immediately above, the specific change that Shear Wind negotiated to Sections 5.3(a) clarified its entitlement to reimbursement for eligible interconnection costs pursuant to the GIA, and the change it obtained to Section 5.3(d) ensured that Shear Wind's Energy Rate only be reduced at Shear Wind's option, and only in connection with the assumption by NSPI of the interconnection costs as determined by Shear Wind. NSPI's implied suggestion that Shear Wind might accept a reduction to its Energy Rate pursuant to Section 5.3(d) with respect to interconnection costs for which it was not responsible under Section 5.3(a) is simply not reasonable. [Emphasis added]
[Exhibit $\mathrm{N}-19(\mathrm{C})$, pp. 5-6]
of the Network Upgrades. The Board is not persuaded that there is any other provision in the PPA which would cause the Board to change this finding.
[70] The Board is unable to conclude whether Shear Wind will enjoy any double recovery. There is no evidence before the Board which would indicate how the Shear Wind bid in response to the RFP compared with the bids of other IPP. The Board accepts that NSPI negotiated the Special Provisions of the PPA with Shear Wind. The Board further accepts the argument of Shear Wind that "NSPI's customers will pay exactly the rate that NSPI contracted for" and that "NSPI is contractually obligated to comply with the PPA". The Board cannot rescue NSPI if it has made what it now believes is an improvident bargain with Shear Wind.

## VI CONCLUSION

[71] For the reasons set out above, the Board finds that Shear Wind is entitled to fully recover the costs of the BUS in accordance with Section 11.4.1 of the GIA.
[72] The Board further finds, in accordance with FERC Order 2003-C, that it is not necessary for Shear Wind to take transmission in order to be entitled to the repayment. [73] The parties have already agreed that the Board has the jurisdiction to modify the GIA. Accordingly, Appendix A to the unexecuted GIA should be modified to provide that the BUS and related equipment should be shown as Network Upgrades.
[74] An Order will issue accordingly.
DATED at Halifax, Nova Scotia, this 18th day of May, 2010.


# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40322

Title: New Prospect Road Substation
Start Date: 2011/05
Final Cost Date: 2011/12
Function: Transmission
Forecast Amount: \$3,068,581

## DESCRIPTION:

This project provides for costs associated with the construction of a $138-12 \mathrm{kV}, 15 / 20 / 25$ MVA substation in the Prospect Road area of New Minas. The station will initially terminate $3 \times 12 \mathrm{kV}$ existing 22V-New Minas feeders.

Summary of Related CI's +/- 2 years:
2011 - 40321 Install Canaan Road to Prospect Road Transmission Line \$2,024,763
2011 - 40323 Canaan Road Line Terminal \$738,632
2011 - 38841 New Minas Land Purchase and Rights of Way \$593,776
2012 - CI TBD

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Overloaded Equipment
Why do this project?
This project is necessary to accommodate load growth in the New Minas area and was recommended in the attached 2008 distribution planning study, "22V-New Minas, 36V-Hillaton, 50V-Klondike Report No. 261-0608-W66.5". The transformers at the existing New Minas substation are approaching overload and system upgrades are required.

Why do this project now?
This project is required at this time to address growth issues in the New Minas area and to minimize unplanned outages due to protection trips.

Why do this project this way?
Constructing a new substation in the Prospect Road area will relieve loading at the existing New Minas substation and will allow for area load growth to be supplied from the new substation.

Based on the scope of the work and availability of NSPI’s Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D OT Labour AO		1,457	0	1,457
092		092-Vehicle T\&D Reg. Labour AO		44,652	0	44,652
094		094 - Interest Capitalized		37,420	0	37,420
095		095-COPS Overtime Labour AO		2,220	0	2,220
095		095-COPS Contracts AO			0	
095		095-Thermal Regular Labour AO		5,115	0	5,115
095		095-COPS Regular Labour AO		68,022	0	68,022
001	003	001 - T\&D Regular Labour	003 - TP - Bldg.,Struct.Grnd.	3,187	0	3,187
002	003	002 - T\&D Overtime Labour	003 - TP - Bldg.,Struct.Grnd.	0	0	0
012	003	012 - Materials	003 - TP - Bldg.,Struct.Grnd.	247,112	0	247,112
013	003	013 - COPS Contracts	003 - TP - Bldg.,Struct.Grnd.		0	
066	003	066 - Other Goods \& Services	003 - TP - Bldg.,Struct.Grnd.	28,756	0	28,756
001	007	001-T\&D Regular Labour	007 - TP - Environmental	1,342	0	1,342
002	007	002 - T\&D Overtime Labour	007 - TP - Environmental	0	0	0
012	007	012 - Materials	007 - TP - Environmental	13,455	0	13.455
013	007	013 - COPS Contracts	007 - TP - Environmental		0	
001	022	001 - T\&D Regular Labour	022 - TP - Elec Contr.Equip.	8,723	0	8,723
002	022	002 - T\&D Overtime Labour	022 - TP - Elec Contr.Equip.	0	0	0
011	022	011 - Travel Expense	022-TP - Elec Contr.Equip.	1,150	0	1,150
012	022	012 - Materials	022 - TP - Elec Contr.Equip.	52,555	0	52,555
013	022	013 - COPS Contracts	022 - TP - Elec Contr.Equip.		0	
001	023	001-T\&D Regular Labour	023 - TP - Power Equip.-Station S	3,355	0	3,355
002	023	002 - T\&D Overtime Labour	023 - TP - Power Equip.-Station S	0	0	0
012	023	012 - Materials	023 - TP - Power Equip.-Station S	29,325	0	29,325
001	043	001 - T\&D Regular Labour	043 - TP - Substn Dev.	23,150	0	23,150
002	043	002 - T\&D Overtime Labour	043 - TP - Substn Dev.	0	0	0
012	043	012 - Materials	043 - TP - Substn Dev.	497,326	0	497,326
001	044	001-T\&D Regular Labour	044 - TP - Substn.Transf.	6,542	0	6,542
002	044	002 - T\&D Overtime Labour	044 - TP - Substn.Transf.	5,752	0	5,752
011	044	011 - Travel Expense	044 - TP - Substn.Transf.	1,610	0	1,610
012	044	012-Materials	044 - TP - Substn.Transf.	1,035,000	0	1,035,000
013	044	013 - COPS Contracts	044 - TP - Substn.Transf.		0	
041	044	041 - Meals \& Entertainment	044 - TP - Substn.Transf.	805	0	805
066	044	066 - Other Goods \& Services	044 - TP - Substn.Transf.	1,150	$\bigcirc$	1,150

Page 927 of 2359

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
001	061	001 - T\&D Regular Labour	061 - TP - Switched Telecomm. Sys	671	0	671
002	061	002 - T\&D Overtime Labour	061 - GP - Switched Telecomm. Sys	0	0	0
012	061	012 - Materials	061 - TP - Switched Telecomm. Sys	23,230	0	23,230
001	085	001 - THERMAL Regular Labour	085 Design	21,304	0	21,304
002	085	002 - THERMAL Overtime Labour	085 Design	0	0	0
011	085	011 - Travel Expense	085 Design	357	0	357
028	085	028 - Consulting	085 Design	54,223	0	54,223
041	085	041 - Meals \& Entertainment	085 Design	86	0	86
066	085	066 - Other Goods \& Services	085 Design	1,150	0	1,150
001	086	001 - T\&D Regular Labour	086 Commissioning	41,153	0	41,153
002	086	002 - T\&D Overtime Labour	086 Commissioning	0	0	0
013	087	013 - COPS Contracts	087 Field Super.\& Ops.		0	
041	087	041 - Meals \& Entertainment	087 Field Super.\& Ops.	10,350	0	10,350
			Total Cost:	3,068,581	0	3,068,581
			Original Cost:			

## CI 40322 New Prospect Road Substation

The following is a breakdown of costs associated with the New Prospect Road Substation Project.

Administrative Overhead and Interest Materials
Contracts
COPS Labour
\$1,898,003

Consulting
\$115,179

Other
\$54,223
\$45,414

Total
\$3,068,580

This work will be completed by a contractor at an estimated rate of \$ per standard work unit hour. The COPS labour portion includes supervision and engineering design. The materials cost of this project is based on costs associated with similar substation projects.

Pages 930-974 have been removed due to confidentiality.

## CI Number: 40281

Title: 2011 Transmission Line Insulator Replacement
Start Date: 2011/03
Final Cost Date: 2011/12
Function: Transmission
Forecast Amount: \$3,018,100

## DESCRIPTION:

This project provides for costs associated with the replacement of insulators on L-6002, a 138 kV line from Gold River to Bridgewater, and two 69 kV lines: L5532 from Big Falls to Gulch, and L5524 from Antigonish to Salmon River Lake. Insulators targeted for replacement have a known failure mechanism resulting from cement growth which leads to unplanned transmission outages. 4433, 1143, and 1091 insulators are planned to be replaced along the three lines, respectively.

Summary of Related CI's +/- 2 years:
2009 - 334642009 Transmission Line Insulator Replacement \$989,302
2010 - 381102010 Transmission Line Insulator Replacement \$2,236,168
2012 - CI TBD
2013 - CI TBD

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Outage Performance

## Why do this project?

This work is being done as part of the overall customer reliability improvement investment. This is year three of a five year (2009-2013) plan to improve reliability to NSPI's customers. The insulator failure mechanism is well known and previously replaced insulators have been performing well. Each avoided insulator failure on these lines will prevent, on average, 29,700, 3,800, and 7,600 customer hours of interruption from each line, respectively.

## Why do this project now?

This project is required because throughout NSPI's system, the type of installed insulator on these circuits has failed due to cement growth.

## Why do this project this way?

Replacing the existing defective insulators with a new type of improved insulator is the only option.
Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

Parent Cl Number			-			Approved Date	
	Cost	entre : 800	- 800-Services - Admin.			Budget Version	2011 ACE Plan
Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO			30,402	0	30,402
094		094 - Interest Capitalized			63,691	0	63,691
095		095-COPS Regular Labour AO			46,314	0	46,314
095		095-COPS Contracts AO				0	
001	038	001-T\&D Regular Labour	038 - DP - Insulators		60,000	0	60,000
002	038	002 - Overtime Labour (No AO)	038 - DP - Insulators		0	0	0
011	038	011 - Travel Expense	038 - DP - Insulators		6,708	0	6,708
012	038	012 - Materials	038 - DP - Insulators			0	
013	038	013 - COPS Contracts	038 - DP - Insulators			0	
014	038	014 - Overtime Meals	038 - DP - Insulators		1,370	0	1,370
041	038	041 - Meals \& Entertainment	038 - DP - Insulators		77,064	0	77,064
				Total Cost:	3,018,100	0	3,018,100
				Original Cost:	0		

## CI 40281-2011 Transmission Line Insulator Replacement

The following is a breakdown of costs associated with the 2011 Transmission Line Insulator Replacement Project.

Administrative Overhead and Interest Materials
Contracts
COPS Labour
Other
Total


The contracted work associated with this project is expected to be completed by a contractor at an estimated rate of $\$$ per standard work unit hour. The materials estimate was based on costs associated with similar projects.

## CI Number: 40280

Title: 2011 Transmission Switch \& Breaker Upgrades
Start Date: 2011/04
Final Cost Date: 2011/12
Function: Transmission
Forecast Amount: \$2,866,718

## DESCRIPTION:

This project provides for costs associated with reliability improvements on the NSPI transmission system. Included is the replacement of the following 15 circuit breakers: $17 \mathrm{~V}-503,43 \mathrm{~V}-502,43 \mathrm{~V}-505,99 \mathrm{H}-501$, $99 \mathrm{H}-502,58 \mathrm{H}-500,58 \mathrm{H}-501,58 \mathrm{H}-502,58 \mathrm{H}-503,58 \mathrm{H}-505,58 \mathrm{H}-506,89 \mathrm{~S}-551,91 \mathrm{H}-608,91 \mathrm{H}-515$ and 91H-513.

Also included is the replacement of the following 16 switches: $22 \mathrm{~V}-503,75 \mathrm{~W}-603,89 \mathrm{~W}-501 \mathrm{~A}, 46 \mathrm{~W}-503$, 46W-504, 104H-614, 20V-501, 70V-503, 30W-602A, 30W-602B, 1C-684A, 1C-684B, 1C-688A, 13V513B, 2S-513A and 2S-513B.

A combination of field-age, condition, and risk of failure was used to identify those circuit breakers and switches that are a priority for replacement.

Summary of Related CI's +/- 2 years
2009 - CI 358622009 Transmission Switching Improvements \$948,268
2010 - CI 380272010 Trans Switch and Breaker Upgrades \$2,070,094
2012 - CI TBD
2013 - CI TBD

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Equipment Replacement

## Why do this project?

This work is being done as part of the overall customer reliability improvement investment. This is year three of a five year (2009-2013) plan to improve reliability to NSPI's customers. This project will replace circuit breakers that are malfunctioning due to age. In addition, switch modifications/additions will result in improved customer reliability.

## Why do this project now?

Doing this project now will result in reliability improvements for customers.

## Why do this project this way?

In most instances, circuit breakers are being replaced for which spare parts are no longer available due to the age of the devices. Various switches are being modified or changed out due to either operational issues, or targeted at improving the capability of the switch. These modifications will result in improved customer reliability.

CI Number : 40280

Parent CI Number	$:$
Cost Centre	$: 800$

Approved Date

- 800-Services - Admin

Budget Version
2011 ACE Plan

Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
092		092-Vehicle T\&D OT Labour AO			7,887	0	7,887
092		092-Vehicle T\&D Reg. Labour AO			161,810	0	161,810
094		094 - Interest Capitalized			66,210	0	66,210
095		095-COPS Overtime Labour AO			12,014	0	12,014
095		095-COPS Contracts AO			35,926	0	35,926
095		095-Thermal Overtime Labour AO			288	0	288
095		095-COPS Regular Labour AO			246,499	0	246,499
095		095-Thermal Regular Labour AO			11,016	0	11,016
001	043	001 - T\&D Regular Labour	043 - TP - Substn Dev.		319,340	0	319,340
002	043	002-T\&D Overtime Labour	043-TP - Substn Dev.		31,129	0	31,129
011	043	011 - Travel Expense	043 - TP - Substn Dev.		197,736	0	197,736
012	043	012-Materials	043 - TP - Substn Dev.		1,520,714	0	1,520,714
013	043	013-COPS Contracts	043-TP - Substn Dev.		153,138	0	153,138
028	043	028 - Consulting	043 - TP - Substn Dev.		49,736	0	49,736
001	085	001 - THERMAL Regular Labour	085 Design		45,879	0	45,879
002	085	002 - THERMAL Overtime Labour	085 Design		2,397	0	2,397
011	085	011 - Travel Expense	085 Design		5,000	0	5,000
				Total Cost:	2,866,718	0	2,866,718
				Original Cost:	1,721,828		

## CI 40280-2011 Transmission Switch \& Breaker Upgrades

The following is a breakdown of costs associated with the 2011 Transmission Switch and Breaker Upgrades Project.

Administrative Overhead and Interest	$\$ 541,650$
Materials	$\$ 1,520,714$
Contracts	$\$ 153,138$
COPS Labour	$\$ 398,745$
Other	$\$ 252,472$

Total
\$2,866,718

The work associated with this project is expected to be completed by NSPI personnel at a rate of approximately $\$ / /$ person day. The estimate for this project was developed based on a similar project, CI 380272010 Transmission Switch and Breaker Upgrade submitted in the 2010 ACE Plan.

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40288

Title: 2011 Substation PCB Equipment Removal
Start Date: 2011/03
Final Cost Date: 2011/12
Function: Transmission
Forecast Amount: \$2,510,193

## DESCRIPTION:

This project provides for the costs associated with the removal of transmission substation devices with 500 $\mathrm{mg} / \mathrm{kg}$, or more of PCBs, to be in compliance with recent Federal Environmental PCB Regulations. Included in this item is the replacement of the following PCB containing devices: approximately 4 breakers, 51 instrument transformers and 207 bushings.

Summary of Related CI's +/- 2 years
2010 - CI 381222010 PCB Equipment Removal/Destruction - \$1,487,135
This is a multi-year initiative that will continue beyond 2011. Future CIs TBD.

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Requirement to Serve
Why do this project?
The removal of transmission substation PCB equipment is a federal regulatory requirement (see attached), with defined timelines.

## Why do this project now?

Regulations require that transmission substation equipment that does not meet the federal PCB guidelines, must be removed from service prior to 2015.

## Why do this project this way?

The sampling and possible replacement of transmission substation equipment containing greater than 500 $\mathrm{mg} / \mathrm{kg}$ concentration of PCBs must be planned over a period of several years to ensure necessary outages are scheduled in a timely manner. Present Environment Canada regulations require completion in 2015.

CI Number : 40288

Parent CI Number	$:$
Cost Centre	$: 800$

## Approved Date

- 800-Services - Admin

Budget Version
2011 ACE Plan

Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO			278,856	0	278,856
094		094 - Interest Capitalized			51,082	0	51,082
095		095-Thermal Regular Labour AO			7,683	0	7,683
095		095-COPS Contracts AO			39,178	0	39,178
095		095-COPS Regular Labour AO			424,806	0	424,806
013	007	013 - COPS Contracts	007-TP - Environmental		0	0	0
001	043	001 - T\&D Regular Labour	043 - TP - Substn Dev.		550,338	0	550,338
012	043	012 - Materials	043 - TP - Substn Dev.		926,250	0	926,250
013	043	013 - COPS Contracts	043 - TP - Substn Dev.		167,000	0	167,000
066	043	066 - Other Goods \& Services	043 - TP - Substn Dev.		33,000	0	33,000
001	085	001 - THERMAL Regular Labour	085 Design		32,000	0	32,000
				Total Cost:	2,510,193	0	2,510,193
				Original Cost:	396,315		

## CI 40288-2011 Substation PCB Equipment Removal

The following is a breakdown of costs associated with the 2011 Substation PCB Equipment Removal Project.

Administrative Overhead and Interest	$\$ 801,605$
Materials	$\$ 926,250$
Contracts	$\$ 167,000$
COPS Labour	$\$ 582,338$
Other	$\$ 33,000$
Total	$\$ 2,510,193$

The work associated with this project is expected to be completed by NSPI personnel at a rate of approximately \$/person day. The material cost is based on a similar project in 2010 to replace PCB contaminated circuit breakers, instrument transformers, and bushings under CI 381222010 PCB Equipment Removal/Destruction submitted in the 2010 ACE Plan.


Vol. 142, $\mathrm{n}^{\mathrm{o}} 19$
Gazette du Canada Part II

OTTAWA, WEDNESDAY, SEPTEMBER 17, 2008
Statutory Instruments 2008
OTTAWA, LE MERCREDI 17 SEPTEMBRE 2008

SOR/2008-247 to 290 and SI/2008-93 to 107
DORS/2008-247 à 290 et TR/2008-93 à 107
Pages 1882 to 2241
Pages 1882 à 2241

## NOTICE TO READERS

The Canada Gazette Part II is published under authority of the Statutory Instruments Act on January 9, 2008, and at least every second Wednesday thereafter.

Part II of the Canada Gazette contains all "regulations" as defined in the Statutory Instruments Act and certain other classes of statutory instruments and documents required to be published therein. However, certain regulations and classes of regulations are exempted from publication by section 15 of the Statutory I nstruments $R$ egulations made pursuant to section 20 of the Statutory Instruments Act.

The Canada Gazette Part II is available in most libraries for consultation.

For residents of Canada, the cost of an annual subscription to the Canada Gazette Part II is $\$ 67.50$, and single issues, $\$ 3.50$. For residents of other countries, the cost of a subscription is US\$67.50 and single issues, US\$3.50. Orders should be addressed to Government of Canada Publications, Public Works and Government Services Canada, Ottawa, Canada K1A 0S5.

The Canada Gazette is also available free of charge on the Internet at http://canadagazette.gc.ca. It is accessible in Portable Document Format (PDF) and in HyperText Mark-up Language (HTML) as the alternate format. The PDF format of Part I, Part II and Part III is official since April 1, 2003, and is published simultaneously with the printed copy.

Copies of Statutory Instruments that have been registered with the Clerk of the Privy Council are available, in both official languages, for inspection and sale at Room 418, Blackburn Building, 85 Sparks Street, Ottawa, Canada.

## AVIS AU LECTEUR

La Partie II de la Gazette du Canada est publiée en vertu de la Loi sur les textes réglementaires le 9 janvier 2008, et au moins tous les deux mercredis par la suite.

La Partie II de la Gazette du Canada est le recueil des « règlements » définis comme tels dans la loi précitée et de certaines autres catégories de textes réglementaires et de documents qu'il est prescrit d'y publier. Cependant, certains règlements et catégories de règlements sont soustraits à la publication par l'article 15 du Règlement sur les textes réglementaires, établi en vertu de l'article 20 de la Loi sur les textes réglementaires.

On peut consulter la Partie II de la Gazette du Canada dans la plupart des bibliothèques.

Pour les résidents du Canada, le prix de l'abonnement annuel à la Partie II de la Gazette du Canada est de 67,50 \$ et le prix d'un exemplaire, de 3,50 \$. Pour les résidents d'autres pays, le prix de l'abonnement est de 67,50 \$US et le prix d'un exemplaire, de $3,50 \$ \mathrm{~S}$. Veuillez adresser les commandes à : Publications du gouvernement du Canada, Travaux publics et Services gouvernementaux Canada, Ottawa, Canada K1A 0S5.

La Gazette du Canada est aussi disponible gratuitement sur Internet au http://gazetteducanada.gc.ca. La publication y est accessible en format de document portable (PDF) et en langage hypertexte (HTML) comme média substitut. Le format PDF en direct de la Partie I, de la Partie II et de la Partie III est officiel depuis le $1^{\text {er }}$ avril 2003 et est publié en même temps que la copie imprimée.

Des exemplaires des textes réglementaires enregistrés par le greffier du Conseil privé sont à la disposition du public, dans les deux langues officielles, pour examen et vente à la Pièce 418 , Édifice Blackburn, 85 , rue Sparks, Ottawa, Canada.

Registration
SOR/2008-273 September 5, 2008
CANADIAN ENVIRONMENTAL PROTECTION ACT, 1999

## PCB Regulations

P.C. 2008-1659 September 5, 2008

Whereas, pursuant to subsection 332(1) ${ }^{\text {a }}$ of the Canadian Environmental Protection Act, $1999^{\text {b }}$, the Minister of the Environment published in the Canada Gazette, Part I, November 4, 2006, a copy of the proposed $P C B$ Regulations, substantially in the annexed form, and persons were given an opportunity to file comments with respect to the proposed Regulations or to file a notice of objection requesting that a board of review be established and stating the reasons for the objection;

Whereas, pursuant to subsection 93(3) of that Act, the National Advisory Committee has been given an opportunity to provide its advice under section $6^{c}$ of that Act;

And whereas, in the opinion of the Governor in Council, pursuant to subsection 93(4) of that Act, the proposed Regulations do not regulate an aspect of a substance that is regulated by or under any other Act of Parliament in a manner that provides, in the opinion of the Governor in Council, sufficient protection to the environment and human health;

Therefore, Her Excellency the Governor General in Council, on the recommendation of the Minister of the Environment and the Minister of Health, pursuant to subsection 93(1) and section 97 of the Canadian E nvironmental P rotection A ct, $1999^{\mathrm{b}}$, hereby makes the annexed $P C B$ Regulations.

## TABLE OF CONTENTS

(This table is not part of the Regulations.)
PCB REGULATIONS
PART 1
GENERAL
Definitions
Application
Sale of property
Compliance

PART 2
PROHIBITIONS AND PERMITTED ACTIVITIES

## Prohibitions

5 Release into the environment
6 Prohibited activities

[^4]Enregistrement
DORS/2008-273 Le 5 septembre 2008

## LOI CANADIENNE SUR LA PROTECTION DE L'ENVIRONNEMENT (1999)

## Règlement sur les BPC

## C.P. 2008-1659 Le 5 septembre 2008

Attendu que, conformément au paragraphe 332(1)a de la Loi canadienne sur la protection de l'environnement (1999) ${ }^{\mathrm{b}}$, le ministre de l'Environnement a fait publier dans la Gazette du Cana$d a$ Partie I, le 4 novembre 2006, le projet de règlement intitulé Règlement sur les $B P C$, conforme en substance au texte ci-après, et que les intéressés ont ainsi eu la possibilité de présenter leurs observations à cet égard ou un avis d'opposition motivé demandant la constitution d'une commission de révision;
Attendu que, conformément au paragraphe 93(3) de cette loi, le comité consultatif national s'est vu accorder la possibilité de formuler ses conseils dans le cadre de l'article $6^{c}$ de celle-ci;

Attendu que la gouverneure en conseil est d'avis que, aux termes du paragraphe 93(4) de cette loi, le projet de règlement ne vise pas un point déjà réglementé sous le régime d'une autre loi fédérale de manière à offrir une protection suffisante pour l'environnement et la santé humaine,

À ces causes, sur recommandation du ministre de l'Environnement et du ministre de la Santé et en vertu du paragraphe 93(1) et de l'article 97 de la Loi canadienne sur la protection de l'environnement (1999) ${ }^{\text {b }}$, Son Excellence la Gouverneure générale en conseil prend le Règlement sur les $B P C$, ci-après.

## TABLE DES MATIERES

(La présente table ne fait pas partie du Règlement.)
RÈGLEMENT SUR LES BPC
PARTIE 1
GÉNÉRALITÉS

1	Définitions
2	Application
3	Vente de biens
4	Conformité

PARTIE 2
INTERDICTIONS ET ACTIVITÉS PERMISES

## INTERDICTIONS

5 Rejet dans l'environnement
6 Activités interdites

[^5]
## PART 2 - Continued <br> PROHIBITIONS AND PERMITTED ACTIVITIES - Continued

## Permitted Activities

7 Laboratory analysis
Research
Electrical capacitor
Aircraft, ships, trains and other vehicles
Colouring pigment
Destruction
Solid products
Cables, pipelines, electrical capacitors and other equipment
Liquids for servicing - concentration less than $2 \mathrm{mg} / \mathrm{kg}$

End-OF-USE DATES AND EXTENSION
16 Equipment referred to in subparagraphs 14(1)(d)(i) to (iii)
17 Extension of end-of-use date

## PART 3

## STORAGE

Application - concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more
Requirement to store
Prohibition against storage
Maximum storage periods
Exceptions to maximum storage periods
PCBs or products containing PCBs stored at the coming into force
PCB storage site
Storage requirements
Access to PCB storage site
Inspection and maintenance of a PCB storage site
Fire protection and emergency procedures
PART 4
LABELLING, REPORTS AND RECORDS
LABELLING

[^6]PARTIE 2 (suite)

## INTERDICTIONS ET ACTIVITÉS PERMISES (suite)

## ACTIVITÉS PERMISES

Analyses de laboratoire
Recherches
Condensateurs électriques
Aéronefs, navires, trains et autres véhicules
Pigments pour la coloration
Destruction
Produits solides
Câbles, pipelines, condensateurs électriques et pièces d'équipements
Liquides pour entretien - concentration inférieure à $2 \mathrm{mg} / \mathrm{kg}$

## UTILISATION - DATES LIMITES ET PROLONGATION

Pièces d'équipement visées aux sous-alinéas $14(1) d$ (i) à (iii)
Prolongation de la date de fin d'utilisation
PARTIE 3
STOCKAGE

Application - Concentration égale ou supérieure à $50 \mathrm{mg} / \mathrm{kg}$
Obligation de stocker
Interdiction de stocker
Périodes maximales de stockage
Périodes maximales de stockage - exceptions
BPC et produits qui en contiennent stockés à l'entrée en vigueur
Dépôt de BPC
Exigences relatives au stockage
Accès au dépôt de BPC
Inspection et entretien des dépôts de BPC
Protection contre les incendies et mesures d'urgence
PARTIE 4
ÉTIQUETAGE, RAPPORTS ET DOSSIERS
Étiquetage
Pièces d'équipement et liquides pour leur entretien
Câbles et pipelines
Installation autre qu'un centre de transfert ou de destruction
Conservation des étiquettes

## PART 4 - Continued

LABELLING, REPORTS AND RECORDS - Continued

## REPORTS

33 End of use of equipment and liquids - 2009
34 Research
35 Colouring pigment
36 Solid products containing PCBs
37 Stored PCBs or products - PCB concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more
Stored PCBs or products - transfer site or destruction facility
39 Date of submission of report
40 Release into the environment
41 Retention
42 Method of submission

## RECORDS

43 Records for permitted activities
44 Inspection record
45 Retention of records
PART 5
REPEALS AND COMING INTO FORCE

## Repeals

## Repeal <br> Repeal

## COMING INTO FORCE

48 Coming into force

## PCB REGULATIONS

PART 1
GENERAL

Definitions
"Act"
«Loi»
"authorized
facility"
«installation
agréée »
"National Fire
Code"
«Code
national de
prévention des
incendies»

1. (1) The following definitions apply in these Regulations.
"Act" means the Canadian Environmental Protection Act, 1999.
"authorized facility" means a facility, including a transfer site, that is authorized by the authorities of the jurisdiction in which it is located to process PCBs or products containing PCBs or to conduct laboratory analysis or research with PCBs or products containing PCBs.
"National Fire Code" means the National Fire Code of Canada 2005, NRCC No. 47667, issued by the Canadian Commission on Building and Fire Codes, National Research Council of Canada, as amended from time to time.

PARTIE 4 (suite)
ÉTIQUETAGE, RAPPORTS ET DOSSIERS (suite)

## RAPPORTS

Date de fin d'utilisation des pièces d'équipement et des liquides - 2009
Recherches
Pigments pour la coloration
Produits solides qui contiennent des BPC
BPC ou produits stockés - concentration de BPC de $50 \mathrm{mg} / \mathrm{kg}$ ou plus
BPC ou produits stockés - Centre de transfert ou de destruction
Date de présentation des rapports
Rejets dans l'environnement
Conservation
Méthode de présentation

## Documents et registres

Documents concernant les activités permises
Registres d'inspections
Conservation des dossiers
PARTIE 5

## ABROGATIONS ET ENTRÉE EN VIGUEUR

Abrogation

## 46 A brogation <br> 47 A brogation

## Entrée en Vigueur

48

## Entrée en vigueur

## RÈGLEMENT SUR LES BPC

PARTIE 1
GÉNÉRALITÉS

1. (1) Les définitions qui suivent s'appliquent au Définitions présent règlement.
« BPC » Tout biphényle chloré visé à l'article 1 de « BPC » la liste des substances toxiques de l'annexe 1 de " $P C B$ " la Loi.
«Code national de prévention des incendies» Le «Code national Code $n$ ational de prévention des in cendies - de prévention Canada 2005, CNRC 47667F, avec ses modifi- "National Fire cations successives, publié par la Commission Code" canadienne des codes du bâtiment et de prévention des incendies du Conseil national de recherches du Canada.
«installation agréée» Installation - notamment un «installation centre de transfert - qui est autorisée par les au- "authorized torités du territoire où elle est située à transformer "authorize

## "PCB" <br> « $B P C$ »

"process"
«transformer»
"product"
«produit»

Concentration

- several
matrices

Concentration and quantity
"PCB" means any chlorobiphenyl described in item 1 of the List of Toxic Substances in Schedule 1 to the Act.
"process" includes to mix with a product.
"product" includes equipment.
(2) For the purposes of these Regulations, if a solid or a liquid containing PCBs is composed of several matrices, the concentration of PCBs is based on the mass of the matrix in which the PCBs are located.
(3) For the purposes of these Regulations, the concentration and quantity of PCBs shall be determined
(a) by a laboratory
(i) accredited by the Standards Council of Canada (SCC), the Canadian Association for Environmental Analytical Laboratories Inc. (CAEAL), or any other accreditation body that is a signatory to the International Laboratory Accreditation Co operation ( ILAC) Mut ual Recognition Arra ngement, and the laboratory shall be accredited in accordance with the International Organization for Standardization standard ISO/IEC 17025:2005 entitled General Requirements for the Competence of Testing and Calibration Laboratories, as amended from time to time, and
(ii) for which the scope of accreditation shall include the analytical method used to determine the concentration of PCBs in the matrix in which the PCBs are located; or
(b) by a laboratory
(i) accredited in accordance with the Environmental Quality Act, R.S.Q., c. Q-2, as amended from time to time, and
(ii) for which the scope of accreditation shall include the analytical method used to determine the concentration of PCBs in the matrix in which the PCBs are located.
(4) For the purposes of these Regulations, other than section 13, the concentration of PCBs in a matrix is determined using a provincially, nationally or internationally recognized sampling method for PCBs in the matrix in which the PCBs are located.
Sampling method bulk solid products
des BPC ou des produits qui en contiennent, ou à les utiliser pour des analyses de laboratoire ou des recherches.
«Loi»La Loi c anadienne sur l a prot ection de "Loi"" l'environnement (1999).
«produit» S'entend notamment d'une pièce "produit"
d'équipement. d'équipement.
«transformer» S'entend notamment du fait de "transformer» mélanger avec tout produit.
(2) Pour l'application du présent règlement, lorsqu'un solide ou un liquide qui contient des BPC est composé de plusieurs matrices, la concentration de BPC est basée sur la masse de la matrice dans laquelle les BPC se trouvent.
(3) Pour l'application du présent règlement, la Concentration concentration et la quantité de BPC sont et quantité déterminées:
a) soit par tout laboratoire :
(i) qui est accrédité à la norme de l'Organisation internationale de normalisation intitulée Exigences générales concernant la compélée Exigences générales concernant la compé-
tence des laboratoires d'étalonnages et d'essais (ISO/IEC 17025:2005), avec ses modifications successives, par le Conseil canadien des norsuccessives, par le Conseil canadien des nor-
mes (CCN), l'Association canadienne des laboratoires d'analyse environnementale (ACLAE) ratoires d'analyse environnementale (ACLAE)
ou tout autre organisme d'accréditation signataire de l'International La boratory Accred ita-
tion Co operation (ILAC) Mu tual Reco gnition taire de l'International La boratory Accred ita-
tion Co operation (ILAC) Mu tual Reco gnition Arrangement,
(ii) dont la portée d'accréditation couvre la méthode d'analyse utilisée pour déterminer la concentration des BPC dans la matrice dans laquelle les BPC se trouvent;
b) soit par tout laboratoire :
(i) qui est accrédité conformément à la Loi sur la qualité de l'environnement, L.R.Q., ch. Q-2, avec ses modifications successives, (ii) dont la portés d'accréditation couvre la méthode d'analyse utilisée pour déterminer la
concentration des BPC dans la matrice dans méthode d'analyse utilisée pour déterminer la
concentration des BPC dans la matrice dans laquelle se trouvent les BPC.
(4) Pour l'application du présent règlement, sauf l'article 13, la concentration de BPC se trouvant dans une matrice est déterminée au moyen de toute méthode d'échantillonnage pour les BPC dans cette matrice qui est reconnue à l'échelle provinciale, nationale ou internationale.
(5) Pour l'application de l'article 13, la concentration de BPC est déterminée au moyen de toute méthode d'échantillonnage pour les produits solides en vrac qui est prévue par une loi ou un règlement fédéral ou provincial, avec ses modifications successives, ou qui est approuvée par la United States Environmental Protection Agency pour l'application de la loi des États-Unis intitulée Resource Conservation a nd Reco very Act ou de ses règlements avec leurs modifications successives.

Méthode d'échantillon-

## Méthode

 d'échantillonnage produits solides en vracConcentration - plusieurs matrices
rex都 od for bulk solid products, which is set out in either federal or provincial legislation, as amended from time to time, or approved by the United States Environmental Protection Agency for compliance with the Resource Conservation and Reco very Act or with the regulations made under that Act, as amended from time to time.
Application 2. (1) These Regulations apply to PCBs and to
any products containing PCBs.

Non-
application

Sale of property

Compliance
3. Nothing in these Regulations shall be construed as preventing the sale of
(a) personal property or movables that contain PCBs, or real property or immovables that have PCBs or products containing PCBs, and that form part of the sale of the whole or part of a business, including a manufacturing or a processing business;
(b) real property or immovables that have products containing PCBs if the products continue to be used after the sale for the same purpose at the same place and are an integral part of the property or immovable; or
(c) real property or immovables on which a PCB storage site is located.
4. In addition to the persons who must comply with the requirements set out in these Regulations, a person who owns PCBs or products containing PCBs shall ensure that the requirements of these Regulations with respect to those PCBs or products are met.

## PART 2

PROHIBITIONS AND PERMITTED ACTIVITIES

## Prohibitions

Release into the environment

Release from equipment
(2) These Regulations do not apply to the following:
(a) the export and import of PCBs that are hazardous waste or hazardous recyclable material within the meaning of the Export and Import of Hazardous $W$ aste a nd Hazardous $R$ ecyclable Material Regulations or the export of PCBs that are waste within the meaning of the $P C B$ Waste Export Regulations, 1996;
(b) the sale, importation or advertising of liquids containing PCBs for use in microscopy, including immersion oils, but not including refractive index oils, which is prohibited under section 4 of the Hazardous Products Act; and
(c) the offer for sale, sale and use of land contaminated with PCBs or with products containing PCBs.
5. (1) No person shall release PCBs into the environment, other than from the equipment referred to in subsection (2), in a concentration of
(a) $2 \mathrm{mg} / \mathrm{kg}$ or more for a liquid containing PCBs; or
(b) $50 \mathrm{mg} / \mathrm{kg}$ or more for a solid containing PCBs.
(2) No person shall release more than one gram of PCBs into the environment from equipment
2. (1) Le présent règlement s'applique aux BPC Application et à tout produit qui en contient.
(2) Il ne s'applique toutefois pas aux activités Exclusion suivantes:
a) l'exportation et l'importation de BPC qui sont des déchets dangereux ou des matières recyclables dangereuses au sens du Règlement surl'exportation et l'importation de déchets dangereux et de ma tières recycla bles dangereuses et l'exportation de déchets contenant des BPC au sens du Règlement sur l'exportation de déchets contenant des BPC (1996);
b) la vente, l'importation ou la publicité des liquides pour usage en microscopie qui contiennent des BPC, y compris les huiles à immersion mais à l'exclusion des huiles à indice de réfraction, interdites par l'article 4 de la Loisur les produits dangereux;
c) la mise en vente, la vente et l'utilisation de terrains contaminés par des BPC ou des produits qui en contiennent.
3. Le présent règlement n'a pas pour effet d'empêcher la vente des biens suivants:
a) tout bien meuble ou personnel qui contient des BPC ou tout bien immeuble ou réel où se trouvent des BPC ou des produits qui en contiennent, lesquels biens sont compris dans la vente de tout ou partie d'une entreprise, y compris une entreprise de fabrication ou de transformation;
b) tout bien immeuble ou réel dont font partie intégrante les produits qui contiennent des BPC qui s'y trouvent, si les produits continuent d'être utilisés aux mêmes fins et au même endroit après la vente;
c) tout bien immeuble ou réel où se trouve un dépôt de BPC.
4. En plus des personnes auxquelles il incombe des obligations en vertu du présent règlement, le propriétaire de BPC ou de produits qui en contiennent veille à ce que les exigences du présent règlement concernant ces BPC ou produits soient remplies.

## PARTIE 2

## INTERDICTIONS ET ACTIVITÉS PERMISES

## INTERDICTIONS

5. (1) Il est interdit de rejeter dans l'environnement, autrement qu'à partir d'une pièce d'équipement visée au paragraphe (2), des BPC de l'une ou l'autre des concentrations suivantes:
a) dans le cas d'un liquide qui contient des BPC, une concentration égale ou supérieure à $2 \mathrm{mg} / \mathrm{kg}$;
b) dans le cas d'un solide qui contient des BPC , une concentration égale ou supérieure à $50 \mathrm{mg} / \mathrm{kg}$.
(2) Il est interdit de rejeter plus d'un gramme de Rejet à partir BPC dans l'environnement à partir d'une pièce d'une piece

Prohibited activities

Aircraft, ships, trains and other vehicles
referred to in section 16 that is in use or from equipment in use for which an extension has been granted under section 17.
6. Except as provided in these Regulations, no person shall
(a) manufacture, export or import PCBs or a product containing PCBs in a concentration of $2 \mathrm{mg} / \mathrm{kg}$ or more;
(b) offer for sale or sell PCBs or a product containing PCBs in a concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more; or
(c) process or use PCBs or a product containing PCBs.

## Permitted Activities

7. A person may manufacture, export, import, offer for sale, sell, process and use PCBs or products containing PCBs for the purpose of laboratory analysis if the analysis is conducted
(a) in an authorized facility that is authorized for that purpose; or
(b) in a facility that conforms to internationally recognized guidelines on best laboratory practices, if the authorities of the jurisdiction in which the facility is located do not have a mechanism in place to authorize the facility to conduct the analysis.
8. (1) A person may offer for sale or sell PCBs or products containing PCBs to be processed or used for the purpose of research to determine the effects of those PCBs or products on human health or on the environment, if the facility in which they are processed or used is
(a) an authorized facility that is authorized for that purpose; or
(b) a facility that conforms to internationally recognized guidelines on best laboratory practices, if the authorities of the jurisdiction in which the facility is located do not have a mechanism in place to authorize the facility to conduct the research.
(2) A person may process and use the PCBs or products containing PCBs for the purpose of the research referred to in subsection (1) at a facility that meets the requirement set out in paragraph (1)(a) or (b).
9. A person may offer for sale, sell and use an electrical capacitor containing PCBs if the electrical capacitor
(a) is an integral part of a consumer product;
(b) is fusion sealed; and
(c) would be rendered inoperable and irreparable if the PCBs were removed from it.
10. A person may export, import, offer for sale, sell and use for transportation purposes aircraft, ships, trains and other vehicles that contain PCBs
d'équipement visée à l'article 16 qui est en usage ou d'une pièce d'équipement dont l'usage fait l'objet d'une prolongation en vertu de l'article 17 et qui est en usage.
11. Sauf dans la mesure prévue par le présent règlement, il est interdit :
a) de fabriquer, d'exporter ou d'importer des BPC ou tout produit qui en contient en une concentration égale ou supérieure à $2 \mathrm{mg} / \mathrm{kg}$;
b) de mettre en vente ou de vendre des BPC ou tout produit qui en contient en une concentration égale ou supérieure à $50 \mathrm{mg} / \mathrm{kg}$;
c) de transformer ou d'utiliser des BPC ou tout produit qui en contient.

## ACTIVITÉS PERMISES

7. Il est permis de fabriquer, d'exporter, d'importer, de mettre en vente, de vendre, de transformer et d'utiliser des BPC et des produits qui en contiennent pour des analyses de laboratoire, si celles-ci sont effectuées :
a) dans toute installation agréée à cette fin;
b) dans le cas où les autorités du territoire où elle est située ne disposent d'aucun mécanisme l'autorisant à les effectuer, dans toute installation qui est conforme à des lignes directrices, reconnues à l'échelle internationale, sur les pratiques exemplaires en laboratoire.
8. (1) Il est permis de mettre en vente ou de vendre des BPC ou des produits qui en contiennent pour qu'ils soient utilisés ou transformés à des fins de recherche visant à déterminer les effets des BPC ou des produits sur la santé humaine ou l'environnement, si l'installation où ils sont utilisés ou transformés se conforme à l'une ou l'autre des exigences suivantes:
a) elle est agréée à cette fin;
$b$ ) dans le cas où les autorités du territoire où elle est située ne disposent d'aucun mécanisme l'autorisant à effectuer des recherches, elle est conforme à des lignes directrices, reconnues à l'échelle internationale, sur les pratiques exemplaires en laboratoire.
(2) Il est permis de transformer et d'utiliser des BPC et des produits qui en contiennent pour effectuer les recherches visées au paragraphe (1) dans une installation qui se conforme à l'une ou l'autre des exigences prévues à ce paragraphe.
9. Il est permis de mettre en vente, de vendre et d'utiliser tout condensateur électrique qui contient des BPC, si les conditions suivantes sont réunies:
a) il fait partie intégrante d'un produit de consommation;
b) ses joints sont thermoscellés;
c) il ne fonctionnerait plus et serait irréparable si les BPC en étaient extraits.
10. Il est permis d'exporter, d'importer, de mettre en vente, de vendre et d'utiliser pour le transport, tout aéronef, navire, train ou autre véhicule

## Activités

 interdites

都

Analyses de laboratoire

Recherches

Transformation
et utilisation

Condensateurs électriques

Aéronefs, navires, trains et autres véhicules
only in their communication, navigation or electronic control equipment or cables.
$\underset{\text { pigment }}{\text { Colouring }}$

Annual average concentration

Destruction
13. (1) A person may manufacture solid products containing PCBs in a concentration of less than $50 \mathrm{mg} / \mathrm{kg}$ using bulk solid products containing PCBs in a concentration of less than $50 \mathrm{mg} / \mathrm{kg}$, and may use those solid products.

Application
(2) Subsection (1) only applies to the manufacture of the types of products that are manufactured before the day on which these Regulations come into force.
Exception
(3) No person shall offer for sale or sell the products manufactured in accordance with subsection (1) unless the products are used in the course of a commercial or industrial activity.
Cables,
pipelines,
electrical
capacitors
and other equipment
11. (1) A person may manufacture, export, import, offer for sale, sell, process and use a colouring pigment containing PCBs produced incidentally if the concentration of the PCBs is less than $50 \mathrm{mg} / \mathrm{kg}$.
(2) Despite subsection (1), the annual average concentration of PCBs produced incidentally in colouring pigment that a person may manufacture, export, import, offer for sale, sell, process and use shall not exceed $25 \mathrm{mg} / \mathrm{kg}$.
12. A person may process PCBs or products containing PCBs for the purpose of destroying PCBs or recovering PCBs for the purpose of destroying them in an authorized facility that is authorized for that purpose.
Solid products
14. (1) A person may use the following products containing PCBs:
(a) cables, if they remain in place on the day on which these Regulations come into force;
(b) pipelines that transport natural gas, petroleum or petroleum products and any associated equipment that is in contact with the natural gas, petroleum or petroleum products if the pipelines and the equipment remain in place on the day on which these Regulations come into force;
(c) fusion sealed capacitors if they are used in relation to communication equipment or electronic control equipment; and
(d) the following equipment containing PCBs in a concentration of less than $50 \mathrm{mg} / \mathrm{kg}$ if the equipment is used for the purpose for which it was manufactured:
(i) electrical capacitors, other than light ballasts, and electrical transformers and their auxiliary electrical equipment, other than pole-top electrical transformers and their pole-top auxiliary electrical equipment,
(ii) electromagnets that are not used in the handling of food, feed or any additive to food or feed, and
dont seuls l'équipement de communication, de navigation ou de commande électronique ou les câbles contiennent des BPC.
11. (1) Il est permis de fabriquer, d'exporter, d'importer, de mettre en vente, de vendre, de transformer et d'utiliser des pigments pour la coloration qui contiennent des BPC produit par inadvertance en une concentration inférieure à $50 \mathrm{mg} / \mathrm{kg}$.
(2) Toutefois, la concentration moyenne annuelle de BPC produit par inadvertance dans les pigments pour la coloration fabriqués, exportés, importés, mis en vente, vendus, transformés et utilisés par toute personne ne peut dépasser $25 \mathrm{mg} / \mathrm{kg}$.
12. Il est permis, dans une installation agréé à cette fin, de transformer des BPC et des produits qui en contiennent pour les détruire ou pour les récupérer afin de les détruire.
13. (1) Il est permis de fabriquer des produits solides qui contiennent des BPC en une concentration inférieure à $50 \mathrm{mg} / \mathrm{kg}$ à partir de produits solides en vrac qui eux-mêmes contiennent des BPC en une concentration inférieure à $50 \mathrm{mg} / \mathrm{kg}$ et d'utiliser ces produits solides.
(2) Le paragraphe (1) ne s'applique qu'aux types de produits qui sont fabriqués avant l'entrée en vigueur du présent règlement.
(3) Il est interdit de mettre en vente ou de vendre des produits fabriqués conformément au paragraphe (1) pour tout usage en dehors d'une activité commerciale ou industrielle.
14. (1) Il est permis d'utiliser les produits ciaprès qui contiennent des BPC :
a) tout câble, s'il demeure à l'endroit où il se trouvait à l'entrée en vigueur du présent règlement;

Pigments pour la coloration

Moyenne annuelle maximale

Produits solides
b) tout pipeline qui transporte du gaz naturel, du pétrole ou des produits pétroliers, ainsi que tout équipement connexe qui est en contact avec le gaz naturel, le pétrole ou les produits pétroliers, si le pipeline et l'équipement demeurent à l'endroit où ils se trouvaient à l'entrée en vigueur du présent règlement;
c) tout condensateur électrique dont les joints sont thermoscellés et qui est utilisé à des fins de communication ou de commande électronique;
d) les pièces d'équipement ci-après qui contiennent des BPC en une concentration inférieure à $50 \mathrm{mg} / \mathrm{kg}$ et qui sont utilisées aux fins auxquelles elles étaient destinées lors de leur fabrication :
(i) les condensateurs électriques, autres que les ballasts de lampes, et les transformateurs électriques et tout équipement électrique connexe, à l'exception des transformateurs sur poteaux et de tout équipement électrique connexe sur poteaux,

## Electrical

 capacitorsLiquids for servicing concentration
less than
$2 \mathrm{mg} / \mathrm{kg}$
Liquids for servicing concentration of $500 \mathrm{mg} / \mathrm{kg}$ or more

Equipment referred to in subparagraphs 14(1)(d)(i) to (iii)

Light ballasts and pole-top electrical transformers

Liquid concentration of $2 \mathrm{mg} / \mathrm{kg}$ or more
(iii) heat transfer equipment, hydraulic equipment, vapour diffusion pumps and bridge bearings.
(2) A person may import fusion sealed capacitors containing PCBs for use in relation to communication tactical equipment or electronic control tactical equipment.
15. (1) A person may use liquids containing PCBs in a concentration of less than $2 \mathrm{mg} / \mathrm{kg}$ for the purpose of servicing equipment containing PCBs.
(2) A person may use liquids containing PCBs in a concentration of $500 \mathrm{mg} / \mathrm{kg}$ or more for the purpose of servicing equipment containing PCBs in a concentration of $500 \mathrm{mg} / \mathrm{kg}$ or more until December 31, 2009.

## End-OF-USE DATES AND EXTENSION

16. (1) A person may use the equipment referred to in subparagraphs $14(1)(d)($ i) to (iii) until the following dates if the equipment is in use on the day on which these Regulations come into force:
(a) in the case of equipment containing PCBs in a concentration of $500 \mathrm{mg} / \mathrm{kg}$ or more, December 31, 2009; and
(b) in the case of equipment containing PCBs in a concentration of at least $50 \mathrm{mg} / \mathrm{kg}$ but less than $500 \mathrm{mg} / \mathrm{kg}$,
(i) December 31, 2009, if the equipment is located at a drinking water treatment plant or food or feed processing plant, in a child care facility, preschool, primary school, secondary school, hospital or senior citizens' care facility or on the property on which the plant or facility is located and within 100 m of it, and
(ii) December 31, 2025, if the equipment is located at any other place.
(2) A person may use the following equipment containing PCBs in a concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more until December 31, 2025, if the equipment is in use on the day on which these Regulations come into force:
(a) light ballasts; and
(b) pole-top electrical transformers and their pole-top auxiliary electrical equipment.
(3) A person may use a liquid containing $2 \mathrm{mg} / \mathrm{kg}$ or more of PCBs that is in equipment until the day on which the liquid is removed from the equipment.
(ii) les électroaimants ne servant pas à la manutention des aliments destinés aux humains ou aux animaux, ou de tout additif à ces aliments,
(iii) l'équipement caloporteur, l'équipement hydraulique, les pompes à diffusion de vapeur et les appareils d'appui de pont.
(2) Il est permis d'importer tout condensateur électrique qui contient des BPC et dont les joints sont thermoscellés pour qu'il soit utilisé à des fins de communication tactique ou de commande électronique tactique.
17. (1) Il est permis d'utiliser tout liquide qui contient des BPC en une concentration inférieure à $2 \mathrm{mg} / \mathrm{kg}$ pour l'entretien de toute pièce d'équipement qui contient des BPC.
(2) Il est également permis, jusqu'au 31 décembre 2009, d'utiliser tout liquide qui contient des BPC en une concentration égale ou supérieure à $500 \mathrm{mg} / \mathrm{kg}$ pour l'entretien de toute pièce d'équipement qui elle-même contient des BPC en une concentration égale ou supérieure à $500 \mathrm{mg} / \mathrm{kg}$.

## UTILISATION - DATES LIMITES ET PROLONGATION

16. (1) Il est permis d'utiliser les pièces d'équipement visées aux sous-alinéas $14(1) d$ )(i) à (iii) qui sont en usage à l'entrée en vigueur du présent règlement jusqu'aux dates suivantes :
a) si elles contiennent des BPC en une concentration égale ou supérieure à $500 \mathrm{mg} / \mathrm{kg}$, jusqu'au 31 décembre 2009;
b) si elles contiennent des BPC en une concentration égale ou supérieure à $50 \mathrm{mg} / \mathrm{kg}$ mais inférieure à $500 \mathrm{mg} / \mathrm{kg}$ :
(i) jusqu'au 31 décembre 2009, si elles se trouvent dans une usine de traitement d'eau potable ou de transformation des aliments destinés aux humains ou aux animaux, dans une garderie, dans une école - de niveau préscolaire, primaire ou secondaire -, dans un hôpital ou dans une résidence pour personnes âgées ou sur le terrain d'un tel établissement, à 100 m ou moins de celui-ci,
(ii) jusqu'au 31 décembre 2025, si elles se trouvent à tout autre endroit.
(2) Il est permis, jusqu'au 31 décembre 2025, d'utiliser les pièces d'équipement ci-après qui sont en usage à l'entrée en vigueur du présent règlement et qui contiennent des BPC en une concentration égale ou supérieure à $50 \mathrm{mg} / \mathrm{kg}$ :
a) les ballasts de lampes;
b) les transformateurs sur poteaux ainsi que tout équipement électrique connexe sur poteaux.
(3) Il est permis d'utiliser tout liquide qui contient des BPC en une concentration égale ou supérieure à $2 \mathrm{mg} / \mathrm{kg}$ dans une pièce d'équipement jusqu'à ce qu'il en soit extrait.

Condensateurs électriques

Liquides pour entretien concentration inférieure à $2 \mathrm{mg} / \mathrm{kg}$
Liquide pour entretien concentration de $500 \mathrm{mg} / \mathrm{kg}$ ou plus
17. (1) Despite subsection 15(2), paragraph $16(1)(a)$ and subparagraph $16(1)(b)(\mathrm{i})$, a person may use the equipment and the liquids used for servicing that equipment, referred to in those provisions, until the date set out in an extension granted by the Minister under subsection (2) for that equipment and those liquids.

## Application

(2) The Minister shall, on receiving a written application containing the information set out in subsection (3), grant an extension up to the date applied for but no later than December 31, 2014, if either of the following conditions are met:
(a) the equipment is being replaced with equipment that is engineered to order, and
(i) it is not technically feasible to replace the equipment on or before December 31, 2009,
(ii) the applicant is taking all necessary measures to minimize or eliminate any harmful effect of the PCBs in the equipment on the environment and on human health,
(iii) a plan has been prepared, along with timelines, to end the use of the equipment by the date applied for,
(iv) a plan has been prepared for inspecting the equipment on a monthly basis for the period of the extension for damage that could lead to the release of PCBs, and
(v) the equipment bears the label required under section 29 ; or
(b) the equipment is located at a facility that is scheduled for permanent closure on or before December 31, 2014, and
(i) the applicant is taking all necessary measures to minimize or eliminate any harmful effect of the PCBs in the equipment on the environment and on human health,
(ii) a plan has been prepared, along with timelines, to end the use of the equipment by the date applied for,
(iii) a plan has been prepared for inspecting the equipment on a monthly basis, for the period of the extension, for damage that could lead to the release of PCBs, and
(iv) the equipment bears the label required under section 29.

Information
(3) The application shall contain the following:
17. (1) Malgré le paragraphe 15(2), l'alinéa 16(1)a) et le sous-alinéa $16(1) b)(\mathrm{i})$, il est permis d'utiliser les pièces d'équipement et les liquides utilisés pour leur entretien visés à ces dispositions jusqu'à l'expiration de toute prolongation accordée par le ministre en vertu du paragraphe (2) pour ces pièces d'équipement et ces liquides.
(2) Sur réception d'une demande écrite compor- Demande tant les renseignements prévus au paragraphe (3), le ministre accorde une prolongation jusqu'à la date prévue dans la demande mais au plus tard jusqu'au 31 décembre 2014, si l'une ou l'autre des conditions suivantes est remplie :
a) la pièce d'équipement doit être remplacée par une pièce d'équipement conçue et fabriquée sur mesure et :
(i) il est techniquement impossible de le faire le 31 décembre 2009 ou avant cette date,
(ii) le demandeur prend les mesures nécessaires pour éliminer ou atténuer tout effet nocif des BPC contenus dans la pièce sur l'environnement et la santé humaine,
(iii) un plan, incluant un échéancier, a été dressé afin que l'utilisation de la pièce cesse au plus tard à la date prévue dans la demande,
(iv) un plan a été dressé pour l'inspection de la pièce une fois par mois durant la prolongation afin que soit décelé tout dommage pouvant mener au rejet de BPC,
(v) la pièce porte l'étiquette exigée par l'article 29 ;
b) la pièce d'équipement se trouve dans une installation dont la fermeture permanente est prévue au plus tard pour le 31 décembre 2014 et :
(i) le demandeur prend les mesures nécessaires pour éliminer ou atténuer tout effet nocif des BPC contenus dans la pièce sur l'environnement et la santé humaine,
(ii) un plan, incluant un échéancier, a été dressé afin que l'utilisation de la pièce cesse au plus tard à la date prévue dans la demande,
(iii) un plan a été dressé pour l'inspection de la pièce une fois par mois durant la prolongation afin que soit décelé tout dommage pouvant mener au rejet de BPC;
(iv) la pièce porte l'étiquette exigée par l'article 29.
(3) La demande comporte :
a) les nom, adresses municipale et postale et numéro de téléphone du demandeur et de toute personne autorisée à agir en son nom et, le cas échéant, leurs numéro de télécopieur et adresse électronique;
b) les caractéristiques techniques de la pièce d'équipement qui fait l'objet de la demande, notamment :
(i) son type et sa fonction,
(ii) la quantité de liquide qui contient des BPC qui s'y trouve et la quantité de liquide nécessaire pour son entretien, exprimées en litres,

Prolongation de
la date de fin
d'utilisation

Renseignements
(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the applicant and of any person authorized to act on the applicant's behalf;
(b) a technical description of the equipment which is the subject of the application, including
(i) the type and function of the equipment,
(ii) the quantity of liquid containing PCBs that is in the equipment and the quantity of liquid needed for servicing that equipment, expressed in litres,
(iii) the concentration of PCBs in the liquid, expressed in milligrams of PCBs per kilogram of liquid,
(iv) the quantity of PCBs in the liquid that is in the equipment, expressed in kilograms, and
(v) the name-plate description, if any, and the manufacturer's serial number, if any;
(c) the unique identification number that is on the label required under section 29;
(d) the name, if any, and civic address of the facility where the equipment is located, or, if there is no civic address, the location using the owner's site identification system, and the function and technical description of the facility;
(e) information demonstrating that
(i) it is not technically feasible to replace the equipment on or before December 31, 2009, or
(ii) the facility where the equipment is located is scheduled for permanent closure on or before December 31, 2014;
$(f)$ information demonstrating that the applicant is taking all necessary measures to minimize or eliminate any harmful effect of the PCBs that are contained in the equipment on the environment and on human health;
$(g)$ the plan, along with timelines, for ending the use of the equipment; and
$(h)$ the plan for inspecting the equipment.

Notice of
change to information

False or misleading information

Reasons for revocation
(4) The applicant shall notify the Minister in writing of any change to the information provided under subsection (3) within 30 days after the day on which the change occurs.
(5) The Minister shall refuse to grant an extension if the Minister has reasonable grounds to believe that the applicant has provided false or misleading information in support of its application.
Revocation
(6) The Minister shall revoke the extension if
(a) the requirements set out in subsection (2) are no longer met during the period of the extension; or
(b) the Minister has reasonable grounds to believe that the applicant has provided false or misleading information to the Minister in support of its application.
(7) The Minister shall not revoke the extension unless the Minister provides the applicant with
(a) written reasons for the revocation; and
(b) an opportunity to be heard, by written representation, in respect of the revocation.
(iii) la concentration de BPC dans le liquide, exprimée en milligrammes de BPC par kilogramme de liquide,
(iv) la quantité de BPC dans le liquide qui s'y trouve, exprimée en kilogrammes,
(v) s'il y a lieu, l'information figurant sur la plaque d'identification et le numéro de série de son fabricant;
c) le numéro d'identification unique figurant sur l'étiquette en application de l'article 29;
d) le nom, s'il y a lieu, et l'adresse municipale de l'installation où se trouve la pièce d'équipement ou, à défaut, l'endroit où elle se trouve d'après le système d'identification de site du propriétaire, et la fonction et les caractéristiques techniques de l'installation;
e) les renseignements qui établissent :
(i) soit qu'il est techniquement impossible de remplacer la pièce d'équipement le 31 décembre 2009 ou avant cette date,
(ii) soit que la fermeture permanente de l'installation dans laquelle se trouve la pièce d'équipement est prévue au plus tard pour le 31 décembre 2014;
f) les renseignements qui établissent que les mesures nécessaires ont été prises par le demandeur pour éliminer ou atténuer tout effet nocif des BPC contenus dans la pièce d'équipement sur l'environnement et la santé humaine;
$g$ ) le plan et l'échéancier qui seront mis en œuvre afin que cesse l'utilisation de la pièce d'équipement;
h) le plan d'inspection de la pièce d'équipement.
(4) Le demandeur est tenu d'aviser le ministre par écrit de tout changement des renseignements fournis en application du paragraphe (3) dans les trente jours suivant la date du changement.
(5) Le ministre refuse d'accorder une prolongation s'il a des motifs raisonnables de croire que le demandeur a fourni des renseignements faux ou trompeurs au soutien de sa demande.
(6) Il révoque la prolongation :
a) si, durant la prolongation, les conditions prévues au paragraphe (2), selon le cas, ne sont plus remplies;
b) s'il a des motifs raisonnables de croire que le demandeur lui a fourni des renseignements faux ou trompeurs au soutien de sa demande.
(7) Il ne peut toutefois révoquer la prolongation que si, à la fois :
a) il a avisé le titulaire par écrit des motifs de la révocation;
b) il lui a donné la possibilité de présenter des observations écrites au sujet de celle-ci.

Avis de changement des renseignements

Renseignements
faux ou
trompeurs

Révocation

Motifs de révocation

## PART 3

## STORAGE

Application concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more

Determination of amount

Nonapplication

Remote from or no access to roadway

Prohibition against storage
18. (1) Subject to subsection (3), this Part applies to a solid or liquid product containing PCBs in a concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more
(a) that is in an amount equal to or greater than

100 L if the product is a liquid, or in an amount
equal to or greater than 100 kg if the product is a solid; or
(b) that is in a lesser amount if the product contains 1 kg or more of PCBs.
(2) For the purposes of subsection (1), the amount of PCBs or products containing PCBs is the aggregate of all amounts of PCBs and products that are located at a particular site.
(3) This Part does not apply in respect of the following products containing PCBs:
(a) solid or liquid products that are processed daily or used;
(b) pipelines that transport natural gas, petroleum or petroleum products, and any associated equipment that is in contact with the natural gas, petroleum or petroleum products, if they remain in place on the day on which these Regulations come into force; and
(c) cables, if they remain in place on the day on which these Regulations come into force.
19. (1) A person who owns, controls or possesses PCBs or products containing PCBs that are not processed daily or used shall, within 30 days after the day on which those PCBs or products are no longer processed or used or within 30 days after the day on which these Regulations come into force, whichever is later, either
(a) send them for destruction to an authorized facility that is authorized for that purpose; or
(b) store them at a PCB storage site for the period during which they are not processed daily or used.
(2) Despite subsection (1), if the PCBs or products containing PCBs are remote from a roadway system or if there is no access to a roadway system, the person who owns, controls or possesses the PCBs or products may store them at a PCB storage site as soon as feasible but no later than one year after the day on which they are not processed daily or used or one year after the day on which these Regulations come into force, whichever is later. That person shall use best management practices for them from the time that they cease to be processed daily or used until the time that they are stored at a PCB storage site.
20. (1) Effective one year after the day on which these Regulations come into force, no person shall store PCBs or products containing PCBs at the

## PARTIE 3

## STOCKAGE

18. (1) Sous réserve du paragraphe (3), la présente partie s'applique aux produits liquides ou solides qui contiennent des BPC en une concentration égale ou supérieure à $50 \mathrm{mg} / \mathrm{kg}$ et :
a) dont la quantité est égale ou supérieure à 100 L , dans le cas d'un produit liquide, ou à 100 kg , dans le cas d'un produit solide;
$b$ ) dont la quantité est moindre, si ces produits renferment 1 kg ou plus de BPC.
(2) Pour l'application du paragraphe (1), la quantité de BPC ou de produits qui en contiennent correspond à la somme de toutes les quantités de BPC et de produits qui se trouvent dans un même emplacement.
(3) La présente partie ne s'applique pas aux pro- Exclusion duits ci-après qui contiennent des BPC :
a) les produits liquides ou solides qui sont transformés quotidiennement ou utilisés;
b) tout pipeline qui transporte du gaz naturel, du pétrole ou des produits pétroliers, ainsi que tout équipement connexe qui est en contact avec le gaz naturel, le pétrole ou les produits pétroliers, si le pipeline et l'équipement demeurent à l'endroit où ils se trouvaient à l'entrée en vigueur du présent règlement;
c) les câbles, s'ils demeurent à l'endroit où ils se trouvaient à l'entrée en vigueur du présent règlement.
19. (1) Le propriétaire de BPC ou de produits qui en contiennent ou la personne qui en a la possession ou le contrôle est tenu, dans les trente jours suivant la date où ceux-ci cessent d'être transformés quotidiennement ou utilisés ou celle de l'entrée en vigueur du présent règlement, selon la plus tardive de ces dates :
a) soit de les expédier pour qu'ils soient détruits dans une installation agréée à cette fin;
b) soit de les stocker dans un dépôt de BPC pendant qu'ils ne sont pas transformés quotidiennement ou utilisés.
(2) Si les BPC ou les produits qui en contiennent sont éloignés de tout système routier ou se trouvent à un endroit où il n'y a pas d'accès à un tel système, le propriétaire ou la personne peut les stocker dans un dépôt de BPC le plus tôt possible, sans toutefois dépasser un an à compter de la date où ils cessent d'être transformés quotidiennement ou utilisés ou celle de l'entrée en vigueur du présent règlement, selon la plus tardive de ces dates. Ils sont tenus d'appliquer des pratiques exemplaires de gestion pour les BPC et les produits dès qu'ils cessent d'être transformés quotidiennement ou utilisés, et ce, jusqu'à leur stockage dans un dépôt de BPC.
20. (1) À compter d'un an après la date d'entrée Interdiction de en vigueur du présent règlement, il est interdit de stocker des BPC ou des produits qui en contiennent

Application -
Concentration
égale ou
supérieure à
$50 \mathrm{mg} / \mathrm{kg}$

Détermination des quantités
$\square$

$\square$
$\square$


## Obligation de

 stockerEndroit éloigné ou inaccessible t

[^7]$\qquad$

following plants or facilities or on the land on which those plants or facilities are located and within 100 m of them:
(a) a drinking water treatment plant or a food or feed processing plant; or
(b) a child care facility, preschool, primary school, secondary school, hospital, or senior citizens' care facility.

Light ballasts

Maximum storage periods
21. (1) Despite any other provision in these Regulations and subject to section 22, no person shall store PCBs or products containing PCBs, other than those referred to in section 23, beyond the following time limits:
(a) one year, beginning on the day on which their use is no longer permitted under these Regulations or the day on which they are no longer processed daily or used, whichever is sooner, if the PCBs or products are stored at a facility that is not referred to in paragraph $(1)(b)$ or $(c)$;
(b) one year, if the PCBs or products are stored at an authorized facility that is a transfer site; and
(c) two years, if the PCBs or products are stored at an authorized facility that is authorized to destroy them.
(2) If the PCBs or products containing PCBs are sent from one transfer site to another, the period referred to in paragraph $(1)(b)$ begins when they are received at the first transfer site.
(3) The owner or operator of the facility referred to in paragraph $(1)(a)$ or $(b)$ shall send the PCBs or products containing PCBs for destruction to an authorized facility that is authorized for that purpose within the time limit set out in those paragraphs.
22. (1) Section 21 does not apply to the storage of
(a) liquids referred to in subsection 15(2) or for which an extension has been granted under subsection 17; or
(b) solids and liquids containing PCBs in a concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more resulting from environmental restoration work and stored on site for the duration of the work, if the requirements set out in subsections (2) and (3) are complied with.
(2) The owner of the land where the solids and liquids referred to in paragraph (1)(b) are located shall submit to the Minister at least 30 days before the storage of the solids or liquids or within 30 days after the day on which these Regulations come into force, whichever is later, the following information:
(a) the civic address of the restoration work site or if there is no civic address, the location using the Global Positioning System;
(b) the date of commencement of the restoration work;
(c) the anticipated date of completion of the restoration work; and
dans l'un des établissements ci-après ou sur le terrain d'un tel établissement, à 100 m ou moins de celui-ci :
a) une usine de traitement d'eau potable ou de transformation des aliments destinés aux humains ou aux animaux;
b) une garderie, une école - de niveau préscolaire, primaire ou secondaire -, un hôpital ou une résidence pour personnes âgées.
(2) Le paragraphe (1) ne s'applique pas aux ballasts de lampes.
21. (1) Malgré toute autre disposition du présent règlement mais sous réserve de l'article 22 , il est interdit de stocker des BPC et des produits qui en contiennent, autres que ceux visés à l'article 23, audelà de la période applicable suivante :
a) un an à compter du jour où le présent règlement ne permet plus l'utilisation des BPC et des produits ou de celui, s'il est antérieur, où ils ont cessé d'être transformés quotidiennement ou utilisés, s'ils sont stockés à une installation qui n'est pas visée aux alinéas (1) $b$ ) ou $c$ );
$b$ ) un an, s'ils sont stockés dans une installation agréée qui est un centre de transfert;
c) deux ans, s'ils sont stockés dans une installation agréée qui est autorisée à les détruire.
(2) Si les BPC et les produits qui en contiennent sont expédiés d'un centre de transfert à un autre, la période prévue à l'alinéa (1)b) commence à courir le jour de leur réception au premier centre de transfert.
(3) Le propriétaire ou l'exploitant de l'installation visée aux alinéas (1) a) ou b) est tenu d'expédier, dans le délai prévu à ces alinéas, les BPC ou les produits qui en contiennent pour qu'ils soient détruits dans une installation agréée à cette fin.
22. (1) L'article 21 ne s'applique pas au stockage : a) des liquides visés au paragraphe $15(2)$ ou pour lesquels une prolongation a été accordée en vertu de l'article 17;
b) des solides et des liquides qui contiennent des BPC en une concentration égale ou supérieure à $50 \mathrm{mg} / \mathrm{kg}$ et qui sont issus de travaux de restauration de l'environnement et stockés sur place pendant la durée des travaux, si les exigences prévues aux paragraphes (2) et (3) sont respectées.
(2) Le propriétaire du terrain où se trouvent les solides ou les liquides visés à l'alinéa (1) $b$ ) fournit au ministre, au plus tard trente jours avant la date de leur stockage ou après celle de l'entrée en vigueur du présent règlement, selon la plus tardive de ces dates, les renseignements suivants:
a) l'adresse municipale de l'endroit où sont effectués les travaux de restauration ou, à défaut, sa localisation d'après le système mondial de localisation;
b) la date de début des travaux de restauration;
c) la date prévue pour la fin des travaux de restauration;

Ballasts de
lampes
Périodes maximales de stockage

Centres de transfert

Destruction
$\qquad$
D

Périodes maximales de stockage exceptions

Renseignements à fournir

Changes to information

PCBs or

## products

containing
PCBs stored
at the coming into force

## PCB storage

 site(d) the anticipated date of the end of storage of the solids or liquids.
(3) The person referred to in subsection (2) shall notify the Minister in writing of the changes to be made at least 30 days before making any changes to the information provided under that subsection.
23. The person who owns PCBs or products containing PCBs, other than liquids for which an extension has been granted under section 17, that are stored on the day on which these Regulations come into force shall send them no later than December 31, 2009 for destruction to an authorized facility that is authorized for that purpose.
24. PCBs or products containing PCBs shall be stored at a site that is
(a) a building, room, shipping container or other enclosed structure; or
(b) an area that is enclosed by a woven mesh wire fence or any other fence or wall with similar security characteristics, and the fence or wall shall be at least 1.83 m high.

Storage requirements
25. The owner or operator of a PCB storage site shall
(a) store all PCBs or products containing PCBs that are in liquid form in
(i) sealed containers, other than drums, that are made of steel or other metals that provide sufficient durability and strength to prevent those PCBs or products from being affected by the weather or released, or
(ii) drums that are
(A) of a capacity not greater than 205 L ,
(B) a closed-head double-bung drum made of steel having a gauge of 16 or heavier, and
(C) painted or treated to prevent rusting;
(b) store all PCBs or products containing PCBs
that are in solid form in
(i) containers, other than drums, that are made of steel or other materials that provide sufficient durability and strength to prevent those PCBs or products from being affected by the weather or released, or
(ii) drums that are
(A) of a capacity not greater than 205 L ,
(B) made of steel having a gauge of 18 or heavier,
(C) equipped with a securely attached, removable steel lid and a gasket made of material that is resistant to the PCBs or the products containing PCBs that are stored in the drums, and
(D) painted or treated to prevent rusting;
(c) store equipment containing PCB liquids in
(i) containers, other than drums, that are made of steel or other materials that provide sufficient durability and strength to prevent the equipment from being affected by the weather and
d) la date prévue pour la cessation du stockage des solides ou des liquides.
(3) Il avise également le ministre par écrit, au moins trente jours à l'avance, de toute modification apportée aux renseignements fournis.
23. Le propriétaire de BPC ou de produits qui en contiennent, autres que des liquides pour lesquels une prolongation a été accordée en vertu de l'article 17 , qui sont stockés à l'entrée en vigueur du présent règlement est tenu de les expédier, au plus tard le 31 décembre 2009, pour qu'ils soient détruits dans une installation agréée à cette fin.
24. Les BPC et les produits qui en contiennent Dépôt de BPC doivent être stockés dans un dépôt qui est :
a) soit un bâtiment, une pièce, un conteneur ou tout autre ouvrage fermé;
b) soit un endroit entouré d'une clôture grillagée ou d'un autre genre de clôture ou d'un mur présentant des caractéristiques similaires sur le plan de la sécurité, la clôture ou le mur ayant au moins $1,83 \mathrm{~m}$ de haut.
25. Le propriétaire ou l'exploitant d'un dépôt de BPC :
a) stocke les BPC et les produits en contenant qui sont des liquides dans :
(i) soit des contenants étanches, autres que des fûts, faits d'acier ou d'autres métaux offrant une durabilité et une solidité suffisantes pour que ces BPC et ces produits ne soient pas affectés par les conditions climatiques ni rejetés,
(ii) soit des fûts qui, à la fois :
(A) ont une capacité d'au plus 205 L ,
(B) sont faits d'acier d'épaisseur minimale 16, ont un dessus non amovible et sont munis de deux bondes,
(C) sont enduits d'une peinture ou d'un revêtement antirouille;
b) stocke les BPC et les produits en contenant qui sont des solides dans :
(i) soit des contenants, autres que des fûts, faits d'acier ou d'autres matériaux offrant une durabilité et une solidité suffisantes pour que ces BPC et ces produits ne soient pas affectés par les conditions climatiques ni rejetés,
(ii) soit des fûts qui, à la fois :
(A) ont une capacité d'au plus 205 L ,
(B) sont faits d'acier d'épaisseur minimale 18,
(C) sont dotés d'un couvercle d'acier amovible solidement fixé et d'un joint fait d'un matériau résistant aux BPC et aux produits en contenant qui y sont stockés,
(D) sont enduits d'une peinture ou d'un revêtement antirouille;
c) stocke les pièces d'équipement qui renferment des liquides contenant des BPC dans :
(i) soit des contenants, autres que des fûts,
faits d'acier ou d'autres matériaux offrant une
to prevent any PCB liquid that leaks from the equipment from being released, or
(ii) drums described in subparagraph (b)(ii);
(d) store all equipment that is not in a container, other than drained equipment, if that equipment contains PCB liquid, and all containers of PCB liquid, on a floor or surface that is made of steel, concrete or any other similar durable material and that is constructed with curbing or sides that are capable of containing
(i) if one piece of equipment or one container is being stored, $125 \%$ of the volume of the PCB liquid in the equipment or container, and
(ii) if more than one piece of equipment or more than one container is being stored, the greater of twice the volume of the PCB liquid in the largest piece of equipment or the largest container and $25 \%$ of the volume of all the PCB liquid stored on the floor or surface;
(e) if the material of the floor or surface or the curbing or sides referred to in paragraph (d) are capable of absorbing any PCB liquid or other product containing PCBs, seal the floor, surface, curbing or sides with an impervious, durable, PCB-resistant coating;
$(f)$ ensure that all floor drains, sumps or other openings in the floor or surface referred to in paragraph (d) are
(i) closed and sealed to prevent the release of liquids, or
(ii) connected to a drainage system suitable for liquid dangerous goods that terminates at a location where any spilled liquids will be contained and recovered and where the spilled liquids will not create a fire hazard or a risk to public health or safety;
$(g)$ place on skids or pallets all equipment containing PCBs and containers of PCBs or products containing PCBs that are not permanently secured to the floor or a surface;
(h) stack containers of PCBs and products containing PCBs, other than drums, only if the containers are designed for stacking, and stack containers of PCB liquid not more than two containers high;
(i) if drums containing PCBs or products containing PCBs are stacked, separate the drums from each other with pallets and, in the case of drums of PCB liquid, stack the drums not more than two drums high;
(j) store equipment containing PCBs, and containers of PCBs or products containing PCBs, in a manner that makes them accessible for inspection;
(k) store PCBs or products containing PCBs in a manner that prevents them from catching fire or being released;
( $l$ ) store PCBs or products containing PCBs together, and separate them from other stored materials;
durabilité et une solidité suffisantes pour que les pièces d'équipement ne soient pas affectées par les conditions climatiques et que les liquides, s'ils fuient des pièces, ne soient pas rejetés,
(ii) soit des fûts visés au sous-alinéa $b$ )(ii);
d) stocke les pièces d'équipement - autres que celles contenant des BPC qui ont été vidangées qui ne sont pas dans un contenant et qui renferment des liquides contenant des BPC, ainsi que tout contenant qui renferme de tels liquides, sur un plancher ou une surface fait d'acier, de béton ou d'un autre matériau durable semblable et entouré d'un rebord ou de côtés capables de retenir :
(i) si une seule pièce d'équipement ou un seul contenant est stocké, $125 \%$ du volume des liquides contenant des BPC que renferme cette pièce d'équipement ou le contenant,
(ii) si plus d'une pièce d'équipement ou plus d'un contenant est stocké, le plus élevé des volumes suivants : le double du volume des liquides contenant des BPC que renferme la plus grosse pièce d'équipement ou le plus grand contenant ou $25 \%$ du volume de l'ensemble des liquides contenant des BPC qui sont stockés sur le plancher ou la surface;
e) scelle, au moyen d'un revêtement étanche, durable et résistant aux BPC, le plancher, la surface, le rebord ou les côtés visés à l'alinéa $d$ ), lorsqu'ils peuvent absorber des liquides ou d'autres produits qui contiennent des BPC;
$f$ ) veille à ce que les drains de sol, puisards et autres ouvertures dans le plancher ou la surface visés à l'alinéa $d$ ) soient, selon le cas :
(i) obturés et scellés pour empêcher le rejet de liquides,
(ii) reliés à un réseau de drainage convenant aux marchandises dangereuses liquides, qui se jette dans un lieu où les liquides déversés seront confinés et récupérés et où ils ne constitueront pas un risque d'incendie ni un risque pour la santé et la sécurité publiques;
$g$ ) place sur des patins ou des palettes les pièces d'équipement contenant des BPC et les contenants renfermant des BPC ou des produits en contenant qui ne sont pas fixés de façon permanente à un plancher ou à une surface;
h) empile les contenants de BPC et de produits qui en contiennent, autres que les fûts, seulement s'ils sont conçus à cette fin et, dans le cas des contenants renfermant des liquides qui contiennent des BPC, ne les empile pas à plus de deux contenants de haut;
i) s'ils sont empilés, sépare les fûts de BPC et de produits qui en contiennent les uns des autres avec des palettes et, dans le cas des fûts renfermant des liquides qui contiennent des BPC, ne les empile pas à plus de deux fûts de haut;

Access to PCB storage site

Inspection and maintenance of a PCB storage site
( $m$ ) if reasonably practicable, equip any indoor PCB storage site having a mechanical exhaust system with heat or smoke sensory controls that stop the fan and close the intake and exhaust dampers in the event of a fire;
$(n)$ if equipment or containers of PCB liquid are stored outdoors, cover all PCB equipment that is not in a container, other than drained equipment, if that equipment contains PCB liquid, and all containers of PCB liquid, with a weatherproof roof or barrier that protects the equipment and containers and prevents rain or snow from entering the curbing and the sides of the floor and the surface under them; and
(o) ensure that all drained PCB equipment and all containers of any PCB solid or PCB equipment are structurally sound and weatherproof if stored outdoors.
26. The owner or operator of a PCB storage site shall keep all points of access to the PCB storage site locked or guarded.
27. The owner or operator of a PCB storage site shall
(a) inspect all floors, curbing, sides, drains, drainage systems, weatherproof roofs and barriers, fences and walls of the PCB storage site, any fire alarm system, fire extinguishers and fire suppression system and all equipment containing PCBs, containers used for the storage of PCBs or products containing PCBs and materials for clean-up at the PCB storage site
(i) each month,
(ii) at intervals of more than one month, if the Minister, on the written request of the owner or operator, determines that it is not reasonably practicable to inspect the site each month, due to its remote location, or
(iii) at intervals of less than one month, if more frequent inspections are necessary for the safe operation of the site; and
(b) keep in good condition and, if damaged, immediately repair or replace the floors, curbing, sides, drains, drainage systems, weatherproof roofs or barriers, fences, walls, fire alarm system, fire extinguishers, fire suppression system, equipment containing PCBs and containers and immediately clean up any contaminated area.
$j$ ) stocke les pièces d'équipement qui contiennent des BPC et les contenants renfermant des BPC ou des produits qui en contiennent de manière à ce qu'ils soient accessibles à des fins d'inspection; $k$ ) stocke les BPC et les produits qui en contiennent de façon à empêcher leur inflammation ou leur rejet;
$l$ ) stocke les BPC et les produits qui en contiennent ensemble, à l'écart des autres matériaux stockés;
$m$ ) dans la mesure du possible, munit tout dépôt de BPC intérieur ayant un dispositif mécanique de ventilation de commandes sensibles à la chaleur ou à la fumée qui, en cas d'incendie, arrêtent le ventilateur et ferment les registres d'admission et d'évacuation d'air;
$n)$ s'ils sont stockés dehors, couvre les pièces d'équipement - autres que celles contenant des BPC qui ont été vidangées - qui ne sont pas dans un contenant et qui renferment des liquides contenant des BPC, ainsi que tout contenant qui renferme de tels liquides, d'une toiture ou d'un écran à l'épreuve des intempéries qui les protège et empêche la pluie et la neige de pénétrer à l'intérieur du rebord et des côtés du plancher et de la surface sur lesquels ils sont posés;
o) s'ils sont stockés dehors, veille à ce que les pièces d'équipement contenant des BPC qui ont été vidangées et tout contenant qui renferme des solides ou des pièces d'équipement contenant des BPC aient une structure en bon état et soient à l'épreuve des intempéries.
26. Le propriétaire ou l'exploitant d'un dépôt de BPC tient chaque point d'accès au dépôt verrouillé ou veille à ce qu'il soit gardé.
27. Le propriétaire ou l'exploitant d'un dépôt de BPC:
a) en inspecte les planchers, les rebords, les côtés, les drains, les réseaux de drainage, les toitures et écrans à l'épreuve des intempéries, les clôtures, les murs, le système d'alarme-incendie, les extincteurs et le réseau d'extinction automatique, ainsi que les pièces d'équipement qui contiennent des BPC, les contenants servant au stockage des BPC ou des produits qui en contiennent et les agents de nettoyage qui s'y trouvent :
(i) tous les mois,
(ii) à des intervalles de plus d'un mois, si le ministre, à la demande écrite du propriétaire ou de l'exploitant, a déterminé qu'il est en pratique impossible d'inspecter le dépôt tous les mois en raison de son isolement,
(iii) à des intervalles de moins d'un mois, si l'exploitation du dépôt en toute sécurité exige des inspections plus fréquentes;
$b)$ les garde en bon état et, en cas de dommage, les répare ou les remplace immédiatement et nettoie sur-le-champ les aires contaminées.

Accès au dépôt de BPC

Fire protection and emergency procedures
28. (1) The owner or operator of a PCB storage site shall
(a) develop and implement at the PCB storage site a fire protection and emergency procedures plan and shall
(i) update and test the plan once per year,
(ii) keep a written copy of the latest plan at the

PCB storage site and another at their principal place of business, and
(iii) make the latest plan readily available to persons who implement the plan and to the local fire department or to the local officer appointed by the provincial Fire Marshall if there is no local fire department or to any other local authority responsible for fire protection;
(b) ensure that all employees who are authorized to enter the PCB storage site are familiar with the contents of the latest plan;
(c) equip the indoor PCB storage site with a fully operative fire alarm system that is maintained, inspected and tested in accordance with articles 6.3.1.1 and 6.3.1.2 of the National Fire Code and with
(i) portable fire extinguishers that are selected and installed in accordance with article 2.1.5.1 of the National Fire Code and maintained, inspected and tested in accordance with article 6.2.1.1 of that Code, or
(ii) an automatic fire suppression system that meets the requirements of article 3.2.7.9 of the National Fire Code, if required;
(d) keep a copy of the records referred to in sections 43 and 44 at the PCB storage site and make a copy readily available to the local fire department and, if there is no local fire department, to the local officer appointed by the provincial Fire Marshall or to any other local authority responsible for fire protection;
(e) ensure that all employees who are authorized to enter the PCB storage site are made aware of the hazards of PCBs and are familiar with the use of protective equipment and clothing and the clean-up procedures referred to in the Guidelines for the Management of Wastes Containing Polychlorinated Bip henyls (PCBs), CCME-TS/WMTRE008, September 1989, as amended from time to time, issued by the Canadian Council of Ministers of the Environment; and
( $f$ ) store absorbent materials for clean-up near the PCB storage site.

Shipping containers
(2) Despite paragraph (1)(c), if the indoor PCB storage site is a shipping container, the owner or operator of the site does not have to equip that site with a fire alarm system.
28. (1) Le propriétaire ou l'exploitant d'un dépôt de BPC :
a) élabore et met en œuvre un plan d'intervention
d'urgence et de lutte contre les incendies et :
(i) le met à jour et le vérifie annuellement,
(ii) en conserve une copie écrite à jour au dépôt et à son établissement principal,
(iii) en met une copie à jour à la disposition de toute personne qui participe à sa mise en œuvre et au service d'incendie local ou, à défaut, au fonctionnaire local nommé par le commissaire provincial aux incendies ou à toute autre autorité locale chargée de la protection contre les incendies,
b) veille à ce que tous les employés autorisés à entrer dans le dépôt connaissent bien le contenu du plan à jour;
c) s'agissant d'un dépôt intérieur, le munit d'un système d'alarme-incendie en état de fonctionnement qui est entretenu, inspecté et mis à l'essai conformément aux exigences des articles 6.3.1.1 et 6.3.1.2 du Code national de prévention des incendies, ainsi que :
(i) soit d'extincteurs portatifs qui sont choisis et installés conformément à l'article 2.1.5.1 de ce code et qui sont entretenus, inspectés et mis à l'essai conformément aux exigences de l'article 6.2.1.1 de ce code,
(ii) soit d'un réseau d'extinction automatique conforme aux exigences de l'article 3.2.7.9 du même code, si celles-ci s'appliquent;
d) conserve au dépôt une copie des documents et registres visés aux articles 43 et 44 respectivement et en met une à la disposition du service d'incendie local ou, à défaut, au fonctionnaire local nommé par le commissaire provincial aux incendies ou à toute autre autorité locale chargée de la protection contre les incendies;
$e)$ veille à ce que tous les employés autorisés à entrer dans le dépôt soient informés des dangers que présentent les BPC et connaissent bien l'utilisation du matériel et des vêtements de protection et les méthodes de nettoyage mentionnées dans le Guide pour la gestion des déchets contenant des biphényles polychlorés ( $B P C$ ) CCME-TS/WM-TRE008, septembre 1989, avec ses modifications successives, publié par le Conseil canadien des ministres de l'environnement;
f) garde les matériaux absorbants servant au nettoyage près du dépôt.
(2) Malgré l'alinéa (1)c), le propriétaire ou l'ex- Conteneur ploitant d'un dépôt de BPC intérieur qui est un conteneur n'est pas tenu de le munir d'un système d'alarme-incendie.

Protection
contre les
incendies et mesures d'urgence

## PART 4

## LABELLING, REPORTS AND RECORDS

## LABELLING

Equipment and liquids used for their servicing

Equipment
for which
extension applied for

Exceptions

Description

Cables and pipelines
29. (1) The owner of equipment referred to in section 16, other than equipment for which an extension has been applied for under section 17, or of a liquid used in its servicing referred to in subsection 15(2) shall affix a label in a readily visible location on the equipment or on the container of the liquid, no later than 30 days after the day on which it ceases to be used.
(2) The owner of equipment for which an extension has been applied under section 17 shall affix a label in a readily visible location on the equipment.
(3) Subsection (1) does not apply to
(a) equipment or containers of liquids that bear a label on the day on which these Regulations come into force that indicates the presence of PCBs; and
(b) equipment that is too small, including light ballasts, to bear the label referred to in subsection (4), until the day on which they cease to be used and are placed in a container that bears the label.
(4) The label must
(a) state "ATTENTION - contains $50 \mathrm{mg} / \mathrm{kg}$ or more of PCBs / contient $50 \mathrm{mg} / \mathrm{kg}$ ou plus de BPC" in black lettering on a white background, in a font size of no less than 36 points;
(b) measure at least 150 mm by 150 mm or at least 76 mm by 76 mm in the case of capacitors; and
(c) in the case of equipment for which an extension is applied for under section 17, state a unique identification number.
30. (1) The owner of a cable, a pipeline or equipment associated with a pipeline, referred to in paragraphs $14(1)(a)$ and (b), containing PCBs in a concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more that is in a room, a tunnel or a facility shall either
(a) affix the label in the form set out in subsection 29(4) in a readily visible location on a part of the cable, pipeline or associated equipment that is accessible; or
(b) place a notice in a readily visible location at the entrance of the room, tunnel or facility that states the information set out in paragraph 29(4)(a) and measures at least 150 mm by 150 mm .
(2) If a part of the cable, pipeline or associated equipment is dismantled, the owner of the cable, pipeline or associated equipment shall affix on each dismantled part the label in the form set out in

PARTIE 4

## ÉTIQUETAGE, RAPPORTS ET DOSSIERS

## Étiquetage

29. (1) Le propriétaire d'une pièce d'équipement visée à l'article 16 , autre qu'une pièce d'équipement qui fait l'objet d'une demande de prolongation en vertu de l'article 17, ou de tout liquide utilisé pour l'entretien visé au paragraphe 15(2) est tenu d'apposer une étiquette, à un endroit bien en vue sur la pièce d'équipement ou le contenant du liquide, au plus tard trente jours après que la pièce ou le contenant cesse d'être utilisé.
(2) Le propriétaire d'une pièce d'équipement qui fait l'objet d'une demande de prolongation en vertu de l'article 17 est tenu d'y apposer une étiquette à un endroit bien en vue.
(3) Le paragraphe (1) ne s'applique pas:
a) aux pièces d'équipement et aux contenants de liquide qui portent, à l'entrée en vigueur du présent règlement, une étiquette qui indique la présence de BPC;
b) aux pièces d'équipement qui sont trop petites, y compris les ballasts de lampes, pour que l'étiquette visée au paragraphe (4) y soit apposée, jusqu'à ce qu'elles cessent d'être utilisées et qu'elles soient placées dans un contenant sur lequel l'étiquette est apposée.
(4) L'étiquette doit :
a) porter la mention «ATTENTION - contains $50 \mathrm{mg} / \mathrm{kg}$ or more of PCBs / contient $50 \mathrm{mg} / \mathrm{kg}$ ou plus de BPC», inscrite en caractères d'au moins 36 points, en noir sur fond blanc;
b) être d'une dimension minimale de 150 mm sur 150 mm ou, dans le cas d'un condensateur, 76 mm sur 76 mm ;
c) dans le cas d'une pièce d'équipement qui fait l'objet d'une demande de prolongation en vertu de l'article 17, porter un numéro d'identification unique.
30. (1) Le propriétaire de câbles, de pipelines ou d'équipement connexe visés aux alinéas $14(1)(a)$ et (b) qui contiennent des BPC en une concentration égale ou supérieure à $50 \mathrm{mg} / \mathrm{kg}$ et se trouvent dans une pièce, un tunnel ou une installation est tenu :
a) soit d'apposer une étiquette conforme au paragraphe 29(4) à un endroit bien en vue sur toute partie accessible du câble, pipeline ou équipement connexe;
b) soit de placer à l'entrée de la pièce, du tunnel ou de l'installation à un endroit bien en vue une affiche d'une dimension minimale de 150 mm sur 150 mm portant la mention prévue à l'alinéa 29(4)a).
(2) En cas de désassemblage d'une partie du câ- Désassemblage ble, du pipeline ou de l'équipement connexe, le propriétaire de ceux-ci est tenu, dans les trente jours suivant le désassemblage, d'apposer une étiquette

Pièces
d'équipement et liquides pour leur entretien

Équipement faisant l'objet d'une demande de prolongation

Exceptions

Description

Câbles et pipelines
subsection 29(4), no later than 30 days after the day on which it is dismantled.

A facility
other than
transfer site or destruction facility

Transfer site or destruction facility

Notice

## Exception

Retention
of labels
31. (1) The owner or operator of a PCB storage site, other than the PCB storage site of an authorized facility that is a transfer site or that is authorized to destroy PCBs, shall affix a label in a readily visible location on any product containing PCBs in a concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more and that are stored at the PCB storage site, which
(a) is in the form referred to in subsection 29(4); and
(b) states "Date of Commencement of Storage" and the date on which the storage begins.
(2) The owner or operator of the PCB storage site of an authorized facility that is a transfer site or that is authorized to destroy PCBs shall affix a label in the form set out in subsection 29(4) in a readily visible location on any container that is a fixed tank and that is used at the facility for the storage of PCBs or products containing PCBs in a concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more.
(3) The owner or operator of a PCB storage site shall place a notice in a readily visible location at the entrance of the site that states the information set out in paragraph $29(4)(a)$ and that measures at least 150 mm by 150 mm .
(4) Subsections (1) and (2) do not apply if the product or the container bear a label on the day on which these Regulations come into force that indicates the presence of PCBs and that states "Date of Commencement of Storage" and the date on which the storage begins.
32. The person who is required to affix a label on a product or container in accordance with sections 29 to 31 shall ensure that it bears that label for the duration that the person possesses the product or container.

## REPORTS

End of use of equipment and liquids - 2009
33. (1) The owner of the equipment referred to in paragraph $16(1)(a)$ and subparagraph $16(1)(b)(i)$, other than the equipment for which an extension is granted by the Minister in accordance with section 17, or the liquids referred to in subsection 15(2) shall prepare a report that is current to December 31 of each calendar year in which the person owns the equipment or the liquids and that contains the following information:
(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the owner and any person authorized to act on the owner's behalf;
(b) the civic addresses of the facilities where the equipment and liquids are located or, if there is no civic address, their location using the owner's site identification system;
conforme au paragraphe $29(4)$ sur chaque partie désassemblée du câble, du pipeline ou de l'équipement connexe.
31. (1) Le propriétaire ou l'exploitant d'un dépôt de BPC d'une installation autre qu'une installation agréée qui est un centre de transfert ou qui est autorisée à détruire des BPC est tenu d'apposer une étiquette à un endroit bien en vue sur tout produit en contenant qui y sont stockés et qui contiennent des BPC en une concentration égale ou supérieure à $50 \mathrm{mg} / \mathrm{kg}$; l'étiquette
a) est conforme au paragraphe 29(4);
b) porte la mention «Date de début de stockage » et la date de début de stockage.
(2) Le propriétaire ou l'exploitant d'un dépôt de BPC d'une installation agréée qui est un centre de transfert ou qui est autorisée à détruire des BPC est tenu d'apposer une étiquette conforme au paragraphe 29(4) à un endroit bien en vue sur tout contenant qui est un réservoir fixe utilisé pour stocker des BPC à l'installation ou des produits qui en contiennent en une concentration égale ou supérieure à $50 \mathrm{mg} / \mathrm{kg}$.
(3) Le propriétaire ou l'exploitant d'un dépôt de BPC place à l'entrée du dépôt à un endroit bien en vue une affiche d'une dimension minimale de 150 mm sur 150 mm portant la mention prévue à l'alinéa 29(4)a).
(4) Les paragraphes (1) et (2) ne s'appliquent pas si le produit ou le contenant porte, à l'entrée en vigueur du présent règlement, une étiquette qui indique la présence de $B P C$, qui porte la mention «Date de début de stockage » et indique la date de début de stockage.
32. La personne qui a l'obligation d'apposer une étiquette sur un produit ou un contenant en application des articles 29 à 31 veille à ce que le produit ou le contenant la porte en tout temps pendant qu'il est en sa possession.

## RAPPORTS

33. (1) Le propriétaire des pièces d'équipement visées à l'alinéa $16(1) a$ ) ou au sous-alinéa $16(1) b)(\mathrm{i})$, autres que celles pour lesquelles une prolongation a été accordée par le ministre en vertu de l'article 17, ou des liquides visés au paragraphe 15(2) est tenu de préparer un rapport, au 31 décembre de chaque année civile durant laquelle il en est propriétaire, comportant les renseignements suivants :
a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom;
b) l'adresse municipale des installations où se trouvent les pièces d'équipement et les liquides ou, à défaut, l'endroit où ils se trouvent d'après le système d'identification de site du propriétaire;

Installation autre qu'un centre de transfert ou de destruction

Affiche

Exception

Conservation des étiquettes

Date de fin d'utilisation des pièces d'équipement et des liquides 2009

Equipment and liquids for which extension granted

End of use of equipment 2025
(c) the quantity of the liquids containing PCBs in the equipment and of the liquids, expressed in litres,
(i) that are in use on December 31,
(ii) that are stored on December 31 at the person's PCB storage site,
(iii) that are sent, in that calendar year, to an authorized facility that is a transfer site,
(iv) that are sent, in that calendar year, to an authorized facility that is authorized to destroy them, or
(v) that are destroyed in that calendar year; and
(d) a certification that the information is accurate and complete and that is dated and signed by the owner or by a person authorized to act on the owner's behalf.
(2) The owner of the equipment referred to in paragraph $16(1)(a)$ and subparagraph $16(1)(b)(i)$ or the liquids referred to in subsection 15(2) for which an extension is granted by the Minister in accordance with section 17 shall prepare a report that is current to December 31 of each calendar year in which the person owns the equipment or the liquids and that contains the following information for each piece of equipment or container of liquid:
(a) the information required under paragraphs (1)(a) and (d);
(b) the unique identification number that is on the label referred to in paragraph 29(4)(c);
(c) the civic address, function and technical description of the facility where the equipment or container of liquid is located or, if there is no civic address, its location using the owner's site identification system;
(d) the progress on the plan's implementation and the timelines for ending the use of the equipment;
(e) the measures taken to minimize or eliminate any harmful effect of the PCBs in the equipment on the environment and on human health; and
$(f)$ the findings of the inspections of the equipment.
(3) The owner of the equipment referred to in subparagraph $16(1)(b)$ (ii) and subsection $16(2)$ shall prepare a report that is current to December 31 of each calendar year in which the person owns the equipment and that contains the following information:
(a) the information required under paragraphs (1)(a), (b) and (d); and
(b) the quantity, expressed in litres, of liquids containing PCBs in the equipment, and the concentration, expressed in $\mathrm{mg} / \mathrm{kg}$, of the PCBs
(i) that are stored on December 31 at the person's PCB storage site,
c) la quantité, exprimée en litres, de liquides qui contiennent des BPC dans les pièces d'équipement et de liquides :
(i) en usage le 31 décembre,
(ii) stockés à son dépôt le 31 décembre,
(iii) expédiés, au cours de l'année civile, à une installation agréée qui est un centre de transfert,
(iv) expédiés, au cours de l'année civile, à une installation agréée qui est autorisée à les détruire,
(v) détruits au cours de l'année civile;
d) une attestation, datée et signée par lui ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.
(2) Le propriétaire des pièces d'équipement visées à l'alinéa 16(1)a) ou au sous-alinéa 16(1)b)(i) ou des liquides visés au paragraphe 15(2) pour lesquels une prolongation a été accordée par le ministre en vertu de l'article 17 est tenu de préparer un rapport, au 31 décembre de chaque année civile durant laquelle il en est propriétaire, comportant les renseignements suivants pour chaque pièce d'équipement et contenant de liquides :
a) les renseignements prévus aux alinéas (1)a) et $d$ );
b) le numéro d'identification unique figurant sur l'étiquette conformément à l'alinéa 29(4)c);
c) l'adresse municipale, la fonction et les caractéristiques techniques de l'installation où se trouvent la pièce d'équipement ou le contenant des liquides ou, à défaut, l'endroit où il se trouvent d'après le système d'identification de site du propriétaire;
d) le progrès accompli dans la mise en œuvre du plan et de l'échéancier dressé en vue de la cessation de l'utilisation de la pièce d'équipement;
$e)$ les mesures prises pour éliminer ou atténuer tout effet nocif des BPC contenus dans la pièce d'équipement sur l'environnement et la santé humaine;
$f)$ les résultats des inspections de la pièce d'équipement.
(3) Le propriétaire des pièces d'équipement visées au sous-alinéa $16(1) b$ )(ii) ou au paragraphe $16(2)$ est tenu de préparer un rapport, au 31 décembre de chaque année civile durant laquelle il en est propriétaire, comportant les renseignements suivants:
a) les renseignements prévus aux alinéas (1)a), b) et $d$ );
b) la quantité de liquides qui contiennent des BPC dans les pièces d'équipement, exprimée en litres, et la concentration de ces BPC dans les liquides, exprimée en $\mathrm{mg} / \mathrm{kg}$ :
(i) stockés à son dépôt de BPC le 31 décembre,

Pièces d'équipement et liquides pour lesquels une prolongation a été accordée相
相




(ii) that are sent, in that calendar year, to an authorized facility that is a transfer site,
(iii) that are sent, in that calendar year, to an authorized facility that is authorized to destroy them, or
(iv) that are destroyed in that calendar year.

Research

Colouring pigment
34. The person who offers for sale, sells, processes or uses PCBs or products containing PCBs for the purpose of research in accordance with section 8 shall prepare a report that is current to December 31 in each calendar year in which the person offers for sale, sells, processes or uses those PCBs or products and that contains the following information:
(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the person and of any person authorized to act on that person's behalf;
(b) an indication of whether the person offers for sale, sells, processes or uses the PCBs or products;
(c) the quantity of the PCBs or of the products containing PCBs that are offered for sale, sold, processed or used in that calendar year; and
(d) a certification that the information is accurate and complete and that is dated and signed by the person or by a person authorized to act on their behalf.
35. The person who manufactures, exports or imports colouring pigment in accordance with section 11 shall prepare a report that is current to December 31 in each calendar year in which the person manufactures, imports or exports the colouring pigment and that contains the following information:
(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the person and of any person authorized to act on that person's behalf;
(b) an indication of whether the person manufactures, exports or imports colouring pigment;
(c) the quantity of colouring pigment, expressed in kilograms, the maximum concentration of PCBs in the colouring pigment, expressed in $\mathrm{mg} / \mathrm{kg}$, and the average annual concentration of PCBs in the colouring pigment, expressed in $\mathrm{mg} / \mathrm{kg}$, that is manufactured, imported or exported in that calendar year;
(d) in the case of importing, the name, telephone number and civic and mailing addresses of the person from whom the colouring pigment is imported and, in the case of exporting, the name, telephone number and civic and mailing addresses of the person to whom the colouring pigment is exported; and
(e) a certification that the information is accurate and complete and that is dated and signed by the person or by a person authorized to act on their behalf.
(ii) expédiés, au cours de l'année civile, à une installation agréée qui est un centre de transfert,
(iii) expédiés, au cours de l'année civile, à une installation agréée qui est autorisée à les détruire,
(iv) détruits au cours de l'année civile.
34. La personne qui met en vente, vend, trans- Recherches forme ou utilise des BPC ou des produits qui en contiennent en vue d'effectuer des recherches conformément à l'article 8 est tenue de préparer un rapport, au 31 décembre de chaque année civile durant laquelle elle les a mis en vente, vendus, utilisés ou transformés, comportant les renseignements suivants:
a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom;
b) une mention indiquant si elle les a mis en vente, vendus, transformés ou utilisés;
c) la quantité de BPC ou de produits qui ont été mis en vente, vendus, transformés ou utilisés durant l'année civile;
d) une attestation, datée et signée par elle ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.
35. La personne qui fabrique, exporte ou importe, conformément à l'article 11, des pigments pour la coloration est tenue de préparer un rapport, au 31 décembre de chaque année civile durant laquelle elle les fabrique, exporte ou importe, comportant les renseignements suivants :
a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom;
b) une mention indiquant si elle les a fabriqués, exportés ou importés;
c) la quantité, exprimée en kilogrammes, de pigments qui ont été fabriqués, exportés ou importés durant l'année civile ainsi que la concentration moyenne annuelle et la concentration maximale en BPC de ces pigments, exprimée en $\mathrm{mg} / \mathrm{kg}$;
d) les nom, adresses municipale et postal et numéro de téléphone de la personne de qui proviennent les pigments, dans le cas où ils sont importés, ou à qui ils sont expédiés, dans le cas où ils sont exportés;
$e)$ une attestation, datée et signée par elle ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.

Stored PCBs
or products PCB
concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more
36. The person who manufactures solid products containing PCBs in accordance with section 13 shall prepare a report that is current to December 31 in each calendar year in which the person manufactures the products and that contains the following information:
(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the person and of any person authorized to act on that person's behalf;
(b) the quantity of solid products manufactured in that calendar year, expressed in kilograms, and the maximum concentration and average concentration of PCBs in the solid products, expressed in $\mathrm{mg} / \mathrm{kg}$, for that calendar year;
(c) the name, telephone number and civic and mailing addresses of the person to whom the manufacturer sells the products; and
(d) a certification that the information is accurate and complete and that is dated and signed by the person or by a person authorized to act on their behalf.
37. The person who owns and stores PCBs or products containing PCBs in a concentration of $50 \mathrm{mg} / \mathrm{kg}$ or more, other than the equipment and liquids referred to in section 33, shall prepare a report that is current to December 31 in each calendar year in which the person stores the PCBs or products at their PCB storage site and that contains the following information:
(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the owner and of any person authorized to act on the owner's behalf;
(b) the civic addresses of the PCB storage sites where the PCBs or products are located, or if there is no civic address, their location using the owner's site identification system;
(c) the quantity of liquids containing PCBs in the products, expressed in litres, and the quantity of solids containing PCBs in the products, expressed in kilograms, and the concentration of PCBs in the liquids and the solids, expressed in $\mathrm{mg} / \mathrm{kg}$
(i) that are stored on December 31 at the person's PCB storage site,
(ii) that are sent, in that calendar year, to an authorized facility that is a transfer site,
(iii) that are sent, in that calendar year, to an authorized facility that is authorized to destroy them, or
(iv) that are destroyed in that calendar year; and
(d) a certification that the information is accurate and complete and that is dated and signed by the owner of the PCBs or products containing PCBs or by a person authorized to act on the owner's behalf.
36. La personne qui fabrique, conformément à l'article 13, des produits solides qui contiennent des BPC est tenue de préparer un rapport, au 31 décembre de chaque année civile durant laquelle elle les fabrique, comportant les renseignements suivants:
a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom;
b) la quantité, exprimée en kilogrammes, de produits qui ont été fabriqués durant l'année civile ainsi que la concentration moyenne et la concentration maximale en BPC de ces produits, exprimée en $\mathrm{mg} / \mathrm{kg}$, pour cette année civile;
c) les nom, adresse municipale et postale et numéro de téléphone de la personne à qui elle a vendu les produits;
d) une attestation, datée et signée par elle ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.
37. Le propriétaire de BPC ou de produits qui en contiennent en une concentration égale ou supérieure à $50 \mathrm{mg} / \mathrm{kg}$, autres que les pièces d'équipement ou les liquides visés à l'article 33 , qui les stocke à son dépôt de BPC est tenu de préparer un rapport, au 31 décembre de chaque année civile durant laquelle il les stocke ainsi, comportant les renseignements suivants :
a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom;
b) l'adresse municipale des dépôts où sont stockés les BPC et les produits ou, à défaut, l'endroit où ils se trouvent d'après le système d'identification de site du propriétaire;
c) la quantité de liquides qui contiennent des BPC dans les produits, exprimée en litres, la quantité de solides qui contiennent des BPC dans les produits, exprimée en kilogrammes, et la concentration de BPC dans les liquides ou les solides, exprimée en $\mathrm{mg} / \mathrm{kg}$ :
(i) stockés à son dépôt de BPC le 31 décembre,
(ii) expédiés, au cours de l'année civile, à une installation agréée qui est un centre de transfert,
(iii) expédiés, au cours de l'année civile, à une installation agréé qui est autorisée à les détruire,
(iv) détruits au cours de l'année civile,
d) une attestation, datée et signée par lui ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.

Produits solides qui contiennent des BPC

BPC ou produits stockés concentration de BPC de $50 \mathrm{mg} / \mathrm{kg}$ ou plus

Stored PCBs
or products transfer site or destruction facility

Date of
submission of report

Report
made under
subsection 33(3)
38. The owner of an authorized facility that is a transfer site or that is authorized to destroy PCBs or products containing PCBs and who stores them at their PCB storage site, other than the owner referred to in section 37, shall prepare a report that is current to December 31 in each calendar year and that contains the following information:
(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the owner and of any person authorized to act on the owner's behalf;
(b) the civic addresses of the sites where the PCBs or products containing PCBs are stored, or if there is no civic address, the location of the sites using the owner's site identification system;
(c) the quantity of liquids containing PCBs in the products, expressed in litres, or the quantity of solids containing PCBs in the products, expressed in kilograms, and the concentration of the PCBs in the liquids and the solids, expressed in $\mathrm{mg} / \mathrm{kg}$
(i) that are stored on December 31 at the owner's PCB storage site,
(ii) that are sent, in that calendar year, to an authorized facility that is a transfer site,
(iii) that are sent, in that calendar year, to an authorized facility that is authorized to destroy them, or
(iv) that are destroyed in that calendar year; and
(d) a certification that the information is accurate and complete and that is dated and signed by the owner of the authorized facility or by a person authorized to act on the owner's behalf.
39. (1) The person who is required to prepare a report in accordance with subsection 33(1) or (2) and with any of sections 34 to 38 shall submit it to the Minister on or before March 31 of the year following the calendar year for which the report is made.
(2) The person who is required to prepare a report in accordance with subsection 33(3) shall submit it to the Minister
(a) on or before March 31, 2010 for reports that are current to December 31 of the year that these Regulations come into force up to the year 2009;
(b) on or before March 31, 2014 for reports that are current to December 31 of each of the years 2010 to 2013;
(c) on or before March 31, 2018 for reports that are current to December 31 of each of the years 2014 to 2017;
(d) on or before March 31, 2022 for reports that are current to December 31 of each of the years 2018 to 2021;
(e) on or before March 31, 2026 for reports that are current to December 31 of each of the years 2022 to 2025;
38. Le propriétaire d'une installation agréée qui est un centre de transfert ou qui est autorisée à détruire des BPC et des produits qui en contiennent, autre que le propriétaire visé à l'article 37 , et qui les stocke à son dépôt de BPC est tenu de préparer un rapport, au 31 décembre de chaque année civile durant laquelle il les transforme ou les détruit, comportant les renseignements suivants :
a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom;
b) l'adresse municipale des dépôts où sont stockés les BPC et les produits ou, à défaut, l'endroit où ils se trouvent d'après le système d'identification de site du propriétaire;
c) la quantité de liquides qui contiennent des BPC dans les produits, exprimée en litres, la quantité de solides qui contiennent des BPC dans les produits, exprimée en kilogrammes, et la concentration de BPC dans les liquides ou les solides, exprimée en $\mathrm{mg} / \mathrm{kg}$ :
(i) stockés à son dépôt de BPC le 31 décembre,
(ii) expédiés, au cours de l'année civile, à une installation agréée qui est un centre de transfert,
(iii) expédiés, au cours de l'année civile, à une installation agréée qui est autorisée à les détruire,
(iv) détruits au cours de l' année civile,
d) une attestation, datée et signée par lui ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.
39. (1) La personne qui est tenue de préparer tout rapport visé aux paragraphes $33(1)$ ou (2) ou à l'un des articles 34 à 38 le présente au ministre au plus tard le 31 mars de l'année civile qui suit celle pour laquelle il est établi.
(2) Celle qui est tenue de préparer le rapport visé au paragraphe 33(3) le présente au ministre :
a) au plus tard le 31 mars 2010, s'il porte sur toute année civile suivant l'entrée en vigueur du présent règlement jusqu'à l'année 2009;
b) au plus tard le 31 mars 2014, s'il porte sur l'une ou l'autre des années 2010 à 2013;
c) au plus tard le 31 mars 2018, s'il porte l'une ou l'autre des années 2014 à 2017;
d) au plus tard le 31 mars 2022, s'il porte sur l'une ou l'autre des années 2018 à 2021;
e) au plus tard le 31 mars 2026, s'il porte sur l'une ou l'autre des années 2022 à 2025;
f) au plus tard le 31 mars 2027, s'il porte sur l'année 2026;
$g$ ) au plus tard le 31 mars 2030, s'il porte sur l'une ou l'autre des années 2027 à 2029.

BPC ou
produits stockés Centre de transfert ou de destruction
$\square$

$\square$

$\square$
$\qquad$

Date de
(f) on or before March 31, 2027 for reports that are current to December 31 of the year 2026; and $(g)$ on or before March 31, 2030 for reports that are current to December 31 of each of the years 2027 to 2029.

Release into the environment
40. (1) For the purposes of paragraph $95(1)(a)$ of the Act, where there occurs or is a likelihood of a release into the environment of PCBs in contravention of section 5, the person who is designated to be provided with a written report is the Manager of Inspection Program, Environmental Enforcement Division, Enforcement Branch of the Department of the Environment in the region where the release occurs or is likely to occur.
Contents (2) The report shall include the following information:
(a) the name, civic and mailing addresses and telephone number of the person who owns or has the charge, management or control of the PCBs that are released into the environment;
(b) the date, time and location of the release;
(c) a description of the source of the release; and
(d) the quantity of liquids containing PCBs re-
leased, expressed in litres, the quantity of solids containing PCBs released, expressed in kilograms, and the concentration of PCBs in the liquids and the solids that are released, expressed in $\mathrm{mg} / \mathrm{kg}$.
41. Any person who is required to submit a report under these Regulations shall keep a copy of the report at their principal place of business in Canada for at least five years after the day on which the report is submitted.
42. Each report referred to in sections 33 to 38 shall be submitted electronically in the format provided by the Department of the Environment, but the report shall be submitted in writing if
(a) no such format is provided; or
(b) it is, owing to circumstances beyond the control of the person required to submit the report, impracticable to submit the report electronically in the format provided.

## RECORDS

43. The following persons shall maintain records that demonstrate that they manufacture, process, use, sell, offer for sale, store, import or export PCBs or products containing PCBs in accordance with the Act and these Regulations:
(a) the owner of PCBs or products containing PCBs;
(b) the person who is engaged in any of these activities; and
(c) the owner or operator of a PCB storage site.
44. (1) The owner or operator of a PCB storage site shall maintain a record of all inspections conducted at the PCB storage site under paragraph 27(a)
(a) listing all items that are inspected;
(b) describing any deficiency found;
45. (1) Pour l'application de l'alinéa $95(1)(a)$ de Rejets dans la Loi, en cas de rejet dans l'environnement - l'environnement effectif ou probable - de BPC en violation de l'article 5 , la personne désignée pour recevoir le rapport écrit est le Gestionnaire du programme d'inspection, Direction de l'application de la loi en environnement, Direction générale de l'application de la loi du ministère de l'Environnement, dans la région où a lieu le rejet - effectif ou probable.
(2) Le rapport comporte les renseignements suivants:
a) les nom, adresses municipale et postale et numéro de téléphone de la personne qui a toute autorité sur les BPC qui ont été rejetés dans l'environnement ou qui en est propriétaire;
b) les date, heure et lieu du rejet;
c) une description de la source du rejet;
d) la quantité de liquides qui contiennent des BPC rejetés, exprimée en litres, la quantité de solides qui contiennent des BPC rejetés, exprimée kilogrammes, et la concentration de BPC dans les liquides ou les solides rejetés, exprimée en $\mathrm{mg} / \mathrm{kg}$.
46. Toute personne qui est tenue de présenter un rapport en application du présent règlement en conserve une copie à son établissement principal au Canada pendant au moins cinq ans après la date de sa présentation.
47. Les rapports visés aux articles 33 à 38 sont présentés sous forme électronique selon le modèle établi par le ministère de l'Environnement. Ils sont toutefois présentés par écrit dans les cas suivants :
a) aucun modèle n'a été établi par le ministère;
b) il est pratiquement impossible, pour des raisons indépendantes de la volonté de la personne tenue de les présenter, de le faire sous forme électronique selon le modèle établi.

## DOCUMENTS ET REGISTRES

43. Les personnes ci-après conservent les documents établissant que des BPC ou des produits qui en contiennent ont été fabriqués, transformés, utilisés, mis en vente, vendus, stockés, importés ou exportés conformément à la Loi et au présent règlement:
a) le propriétaire des BPC ou des produits;
b) la personne qui exerce l'activité;
c) le propriétaire ou l'exploitant du dépôt de BPC.
44. (1) Le propriétaire ou l'exploitant d'un dépôt Registres de BPC tient un registre de toutes les inspections effectuées au dépôt de BPC en application de l'alinéa $27 a$ ), lequel fait état :
a) de tous les points inspectés;

Owner of equipment extension

Retention of records

Repeal

Repeal

Coming into force
(c) setting out the measures taken to remedy the deficiency; and
(d) specifying the dates of the inspections and the names of the inspectors.
(2) The owner of equipment for which an extension of the end-of-use date is applied under section 17 shall maintain a record of all inspections conducted on the equipment that contains the information set out in paragraphs (1)(a) to $(d)$.
45. The person who is required to maintain a record under sections 43 and 44 shall retain it at their principal place of business in Canada or at the place where they conduct the activity for at least five years
(a) after the destruction of the PCBs or the products containing PCBs that are the subject of the record, in the case of the owner of PCBs or products containing PCBs or the owner or operator of the PCB storage site where the PCBs or products containing PCBs are stored; or (b) after the completion of an activity referred to in section 43, in the case of the person who is engaged in that activity.

## PART 5

REPEALS AND COMING INTO FORCE
Repeals
46. Th e Chlorobiphenyls Regulations ${ }^{1}$ a re repealed.
47. The Storage of PCB Material Regulations ${ }^{2}$ are repealed.

Coming into Force
48. These Reg ulations come into force on the day on which they are registered.
b) de toutes les lacunes relevées;
c) des mesures à prendre pour y remédier;
d) de la date de l'inspection et du nom de l'inspecteur.
(2) Le propriétaire d'une pièce d'équipement dont l'utilisation fait l'objet d'une prolongation en vertu de l'article 17 tient un registre de toutes les inspections de la pièce d'équipement qui ont été effectuées, lequel fait état des renseignements prévus aux alinéas (1)a) à $d$ ).
45. Toute personne qui est tenue de conserver des documents ou de tenir un registre en application des articles 43 et 44 respectivement les conserve à son établissement principal au Canada ou à l'établissement où l'activité est exercée pendant au moins cinq ans après :
a) dans le cas du propriétaire de BPC ou de produits qui en contiennent ou du propriétaire ou de l'exploitant d'un dépôt de BPC où sont stockés des BPC ou des produits qui en contiennent, la date de destruction des BPC ou des produits qui en contiennent visés par le document ou le registre; $b$ ) dans le cas de la personne qui exerce une activité visée à l'article 43, la date de la fin de l'activité.

PARTIE 5
ABROGATIONS ET ENTRÉE EN VIGUEUR

## Abrogation

46. Le Règlement sur les biphényles chlorés ${ }^{1}$ est Abrogation abrogé.
47. Le Rè̀lement sur le stockage des matériels Abrogation contenant des BPC ${ }^{2}$ est abrogé.

Entrée en vigueur
48. Le présent règ lement entre en vigueur à la Entrée en date de son enregistrement.

[^8][^9]
# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40260

Title: L-7012 Beaver Narrows Crossing Replacement

Start Date:	$2011 / 06$
Final Cost Date:	$2011 / 12$
Function:	Transmission
Forecast Amount:	$\$ 1,899,224$

## DESCRIPTION:

This project provides for costs associated with replacing two spliced wood pole structures and two associated wood dead end structures with two double circuit dead end steel towers on the Beaver Narrows crossing of L7012 at St. Peters. The replacement of the poles at the crossing will also require that two wooden dead end structures, one on either side of the crossing, be replaced with steel towers.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Transmission Plant

## Sub Criteria: Maintenance

## Why do this project?

This project is required to replace deteriorated plant due to normal age related issues, at the Beaver Narrows river crossing on a 230 kV circuit between Port Hastings and Lingan. This crossing is considered critical in nature and the need for the upgrading the structure has been identified through the transmission inspection program.

## Why do this project now?

This project will replace deteriorated plant that will result in unplanned interruptions on the transmission system if not addressed.

## Why do this project this way?

Replacement of these structures is the most cost effective way of maintaining the reliability of the line at this crossing.

Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.


## CI 40260 L 7012 Beaver Narrows Crossing Replacement

The following is a breakdown of costs associated with the L7012 Beaver Narrows Crossing Replacement Project.

Administrative Overhead and Interest
Materials
Contracts
COPS Labour


Total
\$1,899,224

The contract portion of this work is planned to be completed by a contractor at an estimated rate of $\$$ per standard work unit hour. The COPS labour portion includes supervision and engineering design. The materials amount of this project is based on discussions with steel tower suppliers and estimates from a similar project at Beaver Narrows.


Page 1012 of 2359


Page 1013 of 2359



Page 1015 of 2359


Page 1016 of 2359

## CI Number: 40266

Title: L6002 Deteriorated Plant Replacements
Start Date: 2011/05
Final Cost Date: 2011/11
Function: Transmission
Forecast Amount: \$1,340,019

## DESCRIPTION:

This project provides for costs associated with work on 80 structures on L6002 including the replacement of 46 structures, and the replacement of 60 spans of overhead sky wire from Gold River to Bridgewater and along the Michelin tap.

Summary of Related CI's +/- 2 years
2009-37062 2009 Upgrade L6004 \$343,230
2010-38858 L6002 Deteriorated Replacements \$481,782
2011 - 402812011 Transmission Line Insulator Replacement \$3,018,100

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Maintenance
Why do this project?
This project is required to increase the ground clearance from energized conductors in locations that do not meet minimum Canadian Standards Association (CSA) standards for ground clearance along with replacing deteriorated plant. Ground Clearance issues exist due to the sag of lines over time, updated CSA requirements or a combination of the two.

## Why do this project now?

This project will ensure proper clearances are met and operating ratings can be maintained, and will address deteriorated plant issues.

Why do this project this way?
This project provides for raising the height of spans that do not meet the CSA standard requirement by installing a mid-span structure or changing out existing structures with higher structures.

Based on the scope of the work and availability of NSPI’s Power Line Technician workforce, the Company plans to engage a contractor to perform this work.


## CI 40266 - L6002 Deteriorated Replacements

The following is a breakdown of costs associated with the L6002 Deteriorated Replacements Project.

Administrative Overhead and Interest Materials
Contracts
COPS Labour


Total
\$1,340,019

This work will be completed by a contractor at an estimated rate of \$ per standard work unit hour. The COPS labour portion includes supervision and engineering design.

This 138 kV circuit between Sackville and Bridgewater was constructed between 1962 and 1964 and feeds directly and indirectly 15 substations as well as the Michelin tap and substation. In 2011 the intent is to work on 80 structures and 60 spans of overhead wire from Gold River to Bridgewater including the Michelin Tap. Thirty structures will be replaced for clearance issues and additional work will be carried out to address deteriorated poles, arms and anchors. Replacement of insulators on this section of line will also be carried out in 2011 under CI 402812011 Transmission Line Insulator Replacement.

The decision to do this work was based on structure climbing inspections as well as LIDAR surveys. Please refer to Attachment 1 for the most recent inspection reports.



\％	\％	¿	\％	\％	¿	¿	2
	㜢					$\begin{aligned} & \stackrel{.}{0} \\ & \stackrel{\rightharpoonup}{6} \\ & \text { id } \end{aligned}$	
$\stackrel{\circ}{5}$	$\stackrel{\circ}{2}$	$\stackrel{8}{2}$	$\stackrel{\circ}{2}$	$\stackrel{\circ}{2}$	$\stackrel{\circ}{2}$	$\stackrel{\circ}{2}$	$\stackrel{\circ}{2}$
8	$\stackrel{\%}{6}$	$\stackrel{9}{6}$	$\stackrel{\%}{8}$	$\stackrel{8}{6}$	$\stackrel{8}{8}$	\％	$\frac{\%}{6}$
$\stackrel{\square}{6}$	\％	$\underset{\sim}{\sim}$	$\stackrel{\square}{8}$	\％	8	$\stackrel{8}{8}$	E
$\stackrel{0}{i}$	$\stackrel{N}{\vdots}$	$\stackrel{0}{\grave{a}}$	咇	$\stackrel{0}{\stackrel{\circ}{2}}$	$\stackrel{\circ}{\stackrel{\circ}{5}}$	$\stackrel{\circ}{5}$	$\stackrel{\varrho}{\text { ¢ }}$
\％	\％	\％	\％	\％	¿	\％	\％
						$\begin{aligned} & \text { zo } \\ & \stackrel{\rightharpoonup}{\tilde{\omega}} \\ & \stackrel{\text { ® }}{\ddagger} \end{aligned}$	啔
：	\％	：	\％	8	\％	\％	q
－	－	－	－	\＆	$\therefore$	\＆	ษ
：	\＆	：	$\stackrel{\square}{\circ}$	\＆	i	\＆	q
－	－	－	－	$\times$	$\pm$	$\simeq$	$\pm$
\％	웅	¢	\％	铵	\％	$\stackrel{\text { \％}}{\text { \％}}$	\％
\％	\％	\％	\％	\％	\％	\％	\％



						8   8   8   0   0				
$\%$	$\%$	\％	\％	$\%$	$\%$	\％	$\stackrel{1}{2}$	$\%$	$\%$	$\%$
$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{6} \\ & \stackrel{\rightharpoonup}{\mathbf{\omega}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\begin{aligned} & \text { o } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{6} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{0} \\ & 5 \end{aligned}$						
$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\text { ¢ }}{2}$	$\stackrel{\circ}{\stackrel{\circ}{2}}$	$\begin{aligned} & \stackrel{0}{5} \\ & \frac{1}{2} \end{aligned}$	$\stackrel{\circ}{2}$	$\stackrel{9}{⿳ 亠 丷 厂 彡}$	$\stackrel{\text { ¢ }}{\substack{8}}$	$\stackrel{8}{2}$	$\stackrel{\circ}{5}$	$\stackrel{\circ}{5}$	$\stackrel{\circ}{5}$
$\stackrel{\%}{8}$	¢	$\stackrel{\%}{8}$	$\stackrel{F}{6}$	$๑$	$\stackrel{\text { s }}{\sim}$	$\stackrel{\text { \％}}{\text { \％}}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\sim}{\circ}$	\％	$\stackrel{5}{6}$
$\stackrel{\infty}{0}$	$\stackrel{\circ}{\circ}$	N	$\stackrel{\stackrel{m}{\circ}}{\stackrel{1}{\circ}}$	$\stackrel{F}{6}$	$\underset{\infty}{\substack{8}}$	$\stackrel{?}{+}$	$\stackrel{¢}{\infty}$	$\stackrel{\sim}{\circ}$	$\stackrel{\%}{6}$	$\stackrel{\text { ®\％}}{\substack{~}}$
$\stackrel{\varrho}{\dot{\sim}}$	$\stackrel{N}{\stackrel{N}{6}}$	$\stackrel{\circ}{\stackrel{\circ}{6}}$	$\stackrel{\circ}{\stackrel{N}{6}}$	$\stackrel{N}{\dot{i}}$	$\stackrel{\circ}{i}$	$\stackrel{\circ}{\square}$	$\stackrel{N}{i}$	$\stackrel{N}{\stackrel{N}{2}}$	$\stackrel{\circ}{i}$	$\stackrel{\sim}{i}$
\％	\％	\％	\％	2	2	\％	2	\％	\％	\％
										3
	$\begin{aligned} & z_{0} \\ & \stackrel{0}{+} \\ & \stackrel{\oplus}{6} \\ & \underset{寸}{1} \end{aligned}$	$\begin{aligned} & z_{0} \\ & \stackrel{\rightharpoonup}{\dot{\circ}} \\ & \stackrel{\oplus}{j} \\ & \dot{j} \end{aligned}$	$\begin{aligned} & \text { z. } \\ & \stackrel{c}{6} \\ & \stackrel{\leftrightarrow}{\dot{N}} \\ & \underset{寸}{2} \end{aligned}$					¢	\％	z
		읓 춛				으N $\stackrel{0}{0}$ $\stackrel{y}{c}$				－
8	\＆	8	8	i	$\stackrel{8}{8}$	\％	i	q	i	i
\＆	－	－	－	－	¢	－	i	－	－	i
8	¢	8	\％	\％	¢	\＆	i	\％	8	i
$x$	－	－	－	－	」	－	$\Sigma$	－	－	$\bar{\Sigma}$
$\overline{\text { ¢ }}$	\％	¢	¢¢	\％	－	¢	¢	$\stackrel{\sim}{0}$	$\stackrel{9}{0}$	－
\％	\％	잉	©্ণ	\％	O్ర్ర	（\％）	\％	\％	\％	\％



$\%$	\％	$\therefore$	$\because 2$	¢ 2	¿	\％	$\because$	2	$\%$	\％	$\%$
		$\begin{aligned} & \begin{array}{l} \text { evin } \\ \text { ivid } \\ \stackrel{y}{5} \end{array} \end{aligned}$	高			亳	豏	膏		－	
\％	\％	$\stackrel{8}{2}$	\％\％\％	$\frac{8}{2}$	$\stackrel{\text { \％}}{2}$	$\frac{\text { \％}}{2}$		\％	\％	咇	簏
$\stackrel{8}{6}$	\％	\％	¢ \％	$\stackrel{8}{8}$	$\overline{\bar{\circ}}$	8	$\stackrel{8}{8}$	\％	$\stackrel{1}{\sim}$	\％	$\stackrel{\square}{\circ}$
5	$\stackrel{\%}{6}$	\％	$\overline{5}_{\circ}^{\text {¢ }}$	${ }_{8}^{8}$ \％	$\stackrel{8}{\circ}$	$\stackrel{\text { ® }}{ }$	\＃	$\stackrel{\otimes}{\text { ® }}$	\％	웅	\％
$\stackrel{0}{\tilde{a}}$	$\stackrel{\square}{\square}$	膏	－	－	$\stackrel{\text { ¿® }}{\text { ¢ }}$	\％		$\bar{\square}$	$\frac{0}{\bar{a}}$	$\stackrel{\circ}{\text { ¿ }}$	$\stackrel{\circ}{\circ}$
\％	₹	2	$\because 2$	$\because$	$\approx$	$\%$	\％	$\because$	\％	₹	\％
		$\begin{aligned} & \text { 䨛 } \end{aligned}$	高			$\begin{array}{r}3 \\ \text { 啇 } \\ \text { 筞 } \\ \hline\end{array}$	$\begin{array}{r}\text { 言 } \\ \text { 筞 } \\ \hline\end{array}$				
								䋛			
					$\begin{aligned} & \text { ⿳亠㐅⿸厂巳一⿵冂卄⿸厂干丷 } \\ & \stackrel{\text { In }}{1} \end{aligned}$				$\begin{aligned} & \text { 產 } \\ & \text { an } \end{aligned}$	\％	．
\％	$\because$	：	$\therefore 8$	－：	\％	！	\％	$\stackrel{\square}{8}$	\％	\％	8
－	－	。	－。	。	－	：		－	。	。	
\％	\％	\％	－：	：	\％	\％	\％	$\stackrel{\square}{8}$	：	\％	：
\％	${ }_{8}^{8}$	ฐั	\％${ }^{\text {\％}}$	莫	号	$\stackrel{\square}{\square}$	\％	$\stackrel{\circ}{7}$	F	¢	\％
\％	\％ֻู	\％	\％\％\％	\％\％\％	\％	\％	\％	\％	\％	\％	聞


					$\qquad$	
$\%$	\%	\%	2	\%	2	\%
$\overline{0}$ O 흥	$\stackrel{\stackrel{0}{0}}{\stackrel{1}{4}}$	$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{\varphi}{+} \end{aligned}$	$\stackrel{\stackrel{0}{0}}{\substack{0}}$	$\stackrel{\bigcirc}{\circ}$	$\begin{aligned} & 0.0 \\ & \stackrel{0}{6} \\ & \stackrel{\rightharpoonup}{\mathbf{0}} \\ & \stackrel{0}{0} \end{aligned}$	
$\begin{aligned} & \stackrel{\circ}{\stackrel{\circ}{0}} \\ & \stackrel{\sim}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\bar{\circ}} \\ & \stackrel{\sim}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\vdots} \\ & \stackrel{\otimes}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\vdots} \\ & \stackrel{\otimes}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\ddot{\circ}} \\ & \stackrel{\otimes}{\circ} \end{aligned}$	$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\otimes}{\circ}}$	$\stackrel{\text { ® }}{\text { ® }}$
Nิ	$\stackrel{\infty}{\sim}$	$\stackrel{9}{6}$	¢ָ	Ni	$\stackrel{9}{\square}$	\%
$\stackrel{ \pm}{*}$	$\stackrel{\ell}{\infty}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	$\stackrel{\%}{6}$	$\stackrel{\%}{6}$	$\stackrel{\sim}{\sim}$	$\stackrel{N}{N}$
$\stackrel{\infty}{\vdots}$	$\stackrel{\infty}{\dot{\sim}}$	$\stackrel{\infty}{\stackrel{\omega}{N}}$	$\stackrel{\infty}{i}$	$\stackrel{\sim}{\stackrel{\infty}{6}}$	$\stackrel{\infty}{\dot{\lambda}}$	$\stackrel{\sim}{\circ}$
\%	\%	\%	\%	\%	\%	\%
			$\begin{aligned} & 3 \\ & \stackrel{0}{\circ} \\ & \stackrel{i}{6} \\ & \stackrel{\text { m }}{4} \end{aligned}$			3   0   0   ¢   ¢
	$z$ $\stackrel{z}{\dot{j}}$ $\stackrel{+}{j}$ $\dot{j}$					z- $\stackrel{\text { ¢ }}{\text { ¢ }}$ ¢ ¢
	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{7} \\ & \stackrel{1}{\tau} \end{aligned}$					
\&	2	$\because$	๕	๕	$\stackrel{10}{2}$	12
-	-	-	8	8	-	-
セٌ	?	\%	$\stackrel{8}{8}$	¢	$\stackrel{1}{2}$	$\stackrel{18}{2}$
-	-	-	$\Sigma$	$\Sigma$	-	
\%	¢	8	8	8	¢ิ	\%
-	$\begin{aligned} & 0 \\ & \text { OGO } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D} \\ & \text { OGO } \end{aligned}$	或	-	$\begin{aligned} & 0 \\ & \text { © } \\ & \hline \end{aligned}$	-0

Page 1027 of 2359




## CI Number: 40231

Title: 2011 Protection Upgrades LAK

Start Date:	$2011 / 07$
Final Cost Date:	$2012 / 03$
Function:	Transmission
Forecast Amount:	$\$ 1,609,905$

## DESCRIPTION:

This project provides for the costs to upgrade the protections system at 103 H -Lakeside to comply with Northeast Power Coordination Council (NPCC) criteria for bulk power systems.

Summary of Related CI's +/- 2 years:
2010 - 382662010 Protection Upgrades \$313,331
2011 - 402332011 Protection Upgrades TUC \$3,928,932
2012 - 2012 Protection Upgrades Brushy Hill and Onslow

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: System Protection

## Why do this project?

In 2008, NPCC approved new criteria (Criteria Document A-10) for determining whether a substation bus is categorized as bulk power. The criterion is used to identify substation busses that, if a fault was not successfully cleared by protection, the situation could result in disturbances outside the local operating area. Stations identified through this criterion are required to have fully redundant protection, control and communication schemes as defined in NPCC Directory \#4 - Bulk Power System Protection Criteria. The 103H-Lakeside substation bus has met the criteria for a bulk power element and currently does not have fully redundant protection, control, and communication schemes in place.

## Why do this project now?

Implementation of the redundant protection schemes is required to be completed by the end of 2012. Because this work is significant, NSPI has chosen to complete the five stations requiring this upgrade over a three year period. A portion of 79N-Hopewell was completed in 2010 and will be finished in 2011. The 138 kV portion of 103 H -Lakeside will be completed in 2011 as well as 91 H -Tufts Cove, submitted as a separate Capital Item. 1N-Onslow and 120H-Brushy Hill will be submitted in 2012.

Why do this project this way?
To comply with NPCC standards, fully redundant protection, control and communication systems must be in place for all bulk power elements.
Cl Number : 40231

Parent CI Number	$:$
Cost Centre	$: 800$

## Approved Date

Budget Version 2011 ACE Plan

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO		115,659	0	115,659
094		094 - Interest Capitalized		41,460	0	41,460
095		095-COPS Contracts AO			0	
095		095-COPS Regular Labour AO		176,193	0	176,193
095		095-Thermal Regular Labour AO		25,687	0	25,687
013	003	013 - COPS Contracts	003-TP - Bldg.,Struct.Grnd.		0	
001	022	001 - T\&D Regular Labour	022-TP - Elec Contr.Equip.	62,316	0	62,316
012	022	012 - Materials	022 - TP - Elec Contr.Equip.	343,045	0	343,045
013	022	013-COPS Contracts	022-TP - Elec Contr.Equip.		0	
066	022	066 - Other Goods \& Services	022 - TP - Elec Contr.Equip.	130,000	0	130,000
001	023	001 - T\&D Regular Labour	023 - TP - Power Equip.-Station S	7,002	0	7,002
012	023	012 - Materials	023 - TP - Power Equip.-Station S	22,425	0	22,425
013	023	013 - COPS Contracts	023 - TP - Power Equip.-Station S		0	
001	043	001-T\&D Regular Labour	043 - TP - Substn Dev.	37,985	0	37,985
012	043	012 - Materials	043 - TP - Substn Dev.	28,750	0	28,750
001	061	001 - T\&D Regular Labour	061-TP - Switched Telecomm. Sys	4,901	0	4,901
012	061	012 - Materials	061 - TP - Switched Telecomm. Sys	46,460	0	46,460
001	085	001 - THERMAL Regular Labour	085 Design	106,985	0	106,985
001	086	001 - T\&D Regular Labour	086 Commissioning	116,055	0	116,055
013	087	013-COPS Contracts	087 Field Super.\& Ops.		0	
			Total Cost: Original Cost:	1,609,905	0	1,609,905

## CI 40231-2011 Protection Upgrades LAK

The following is a breakdown of costs associated with the 2011 Protection Upgrades LAK Project.

Administrative Overhead and Interest
Materials
Contracts
Other
COPS Labour


Total
\$1,609,905

The contracts cost estimate for this project is based on work being performed in the Lakeside substation by outside contractors and is not expected to be completed by an affiliate. NSPI COPS labour will be carried out by internal technicians, and electricians at a rate of approximately $\$$ / person day along with engineering design work. The project estimate is based on a similar project carried out in 2010 at Hopewell substation.

NSPI carried out the A-10 test for Nova Scotia. A list of substations that A-10 test criteria identified as Bulk Power was submitted to Northeast Power Coordinating Counsel (NPCC). Once a bus (a substation at a given voltage level) is identified as Bulk Power as per the A-10 test, the requirement for redundant protection schemes is an absolute requirement. The only possibility of eliminating the redundant protection criteria is to find a solution that allows the substation to be removed from the bulk power designation. In 2010, NSPI reduced the number of substations within the province that were to be classified as bulk power through successful justification for removal of four from the list of nine. Those that were removed were 104 H -Kempt Road, 90 H -Sackville, $47 \mathrm{C}-\mathrm{NewPage}$ and 108 H -Burnside.

Please refer to CI 40233, Non-confidential Attachments 1-3 and Confidential Attachment 4 for additional justification for this project.

NSPI plans to complete the remainder of the projects as follows:

79N- Hopewell	$2010 / 2011$
91H-Tuft's Cove	2011
103H-Lakeside	$2011 / 2012$
1N-Onslow	2012
20H-Brushy Hill	2012

## CI Number: 40307

Title: L-6033 and L-6035 Water St. Transmission Tower Refurbishment

Start Date:	$2011 / 03$
Final Cost Date:	$2011 / 12$
Function:	Transmission
Forecast Amount:	$\$ 995,497$

## DESCRIPTION:

This item provides for the costs associated with performing a number of upgrades to 33 steel transmission towers in Halifax peninsula. These steel towers are associated with L6033 and L6035, which form part of a 138kV loop around Metro Halifax.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Maintenance

## Why do this project?

In 2010, a study of the 30 year old steel structures associated with L6033 and L6035 was performed by an external consultant. The report indicated that a number of repairs to these structures were necessary to ensure their structural integrity. Items covered by this project include: steel reinforcement for post insulators and overstressed steel members, repair of anchor bolts and a damper study and installation.

## Why do this project now?

These steel towers carry significant weight and tension of the transmission lines and need to be structurally sound.

## Why do this project this way?

Refurbishment of the existing steel towers is required to ensure their structural integrity and to support transmission supply reliability to the downtown core of Halifax.

Parent CI Number			- 800-Services - Admin.		Approved Date   Budget Version	2011 ACE Plan
	Cost	entre : 800				
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO		80,715	0	80,715
094		094 - Interest Capitalized		28,739	0	28,739
095		095-Thermal Regular Labour AO		14,795	0	14,795
095		095-COPS Contracts AO			0	
095		095-COPS Regular Labour AO		122,961	0	122,961
013	002	013 - COPS Contracts	002 - TP - Land Rights		0	
001	037	001 - T\&D Regular Labour	037 - TP - Steel Towers	159,296	0	159,296
002	037	002 - T\&D Overtime Labour	037 - TP - Steel Towers	0	0	0
012	037	012 - Materials	037 - TP - Steel Towers	114,623	0	114,623
013	037	013 - COPS Contracts	037 - TP - Steel Towers		0	
001	085	001 - THERMAL Regular Labour	085 Design	61,620	0	61,620
002	085	002 - THERMAL Overtime Labour	085 Design	0	0	0
				995,497	0	995,497

## CI 40307 - L6033 and L6035 Water St Transmission Tower Refurbishment

The following is a breakdown of costs associated with the L6033 and L6035 Water St Transmission Tower Refurbishment Project.

Administrative Overhead and Interest Contracts
Materials
COPS Labour


Total
\$995,497

This work will be completed by a contractor with NSPI supervision. Estimates were based on discussions with those who perform this type of work. The COPS labour portion includes engineering studies and design and supervision for completion of this work.

## Pages 1038-1711 have been removed due to confidentiality.

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40270

Title: L-5501 Upgrade 69 kV Circuit to Bridge Ave

Start Date:	$2011 / 04$
Final Cost Date:	$2011 / 08$
Function:	Transmission
Forecast Amount:	$\$ 800,793$

## DESCRIPTION:

This project provides for costs associated with upgrading conductor on the existing 69 kV circuit between Trenton and Stellarton which is 7.7 km in length. The new conductor will be 336.4 ACSR, designed to a maximum operating temperature of 60 degrees Celsius. This item also provides for the replacement of 35 deteriorated structures along the length of the line.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Requirement to Serve
Why do this project?
This project is required to upgrade the capacity of L5501 so it can accommodate increased load.

## Why do this project now?

This project will ensure that reliability to those areas served by L5500 is not affected during line outage situations through the ability to accommodate the increased load on L5501.

## Why do this project this way?

This existing conductor on the 69 kV circuit between Trenton and Stellarton is 2/0 ACSR. Upgrading the conductor to 336.4 ACSR will enable the circuit to accommodate the load of L5500 from Trenton to Stellarton when it is taken out of service or experiences an unplanned outage.

Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.


## CI 40270 - Upgrade 69kV Circuit to Bridge Ave L5501

The following is a breakdown of costs associated with the Upgrade 69 kV Circuit to Bridge Ave L5501 Project.

Administrative Overhead and Interest Materials
Contracts
COPS Labour
Total

\$800,793

This work is expected to be completed by a contractor at an estimated rate of per standard work unit hour. The COPS labour portion includes supervision and engineering design. The materials amount of this project is based on costs associated with similar projects in which deteriorated poles were replaced and conductor upgraded to achieve higher ratings.

From 2006-2010, the combined load on L5500 and 5501 were such that the 51MVA rating of L5501 would be exceeded.

Table 1 - Five Year Load Statistics

Year	  L5501 (MVA)
2006	56.6
2007	61.7
2008	52.6
2009	52.9
2010	52.9

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40323

Title: Canaan Road Line Terminal

Start Date:	$2011 / 05$
Final Cost Date:	$2011 / 12$
Function:	Transmission
Forecast Amount:	$\$ 738,632$

## DESCRIPTION:

This project provides for costs associated with the termination of a 138 kV circuit at the Canaan Road Substation consisting of a new 138 kV circuit breaker.

Summary of Related CI's +/- 2 years:
2011 - 40322 Prospect Road Substation \$3,068,581
2011 - 40321 Install Canaan Road to Prospect Road Transmission Line \$2,024,763
2011 - 38841 New Minas Land Purchase and Rights of Way \$593,776

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Overloaded Equipment

## Why do this project?

This project is necessary to terminate a transmission line to accommodate load growth in the New Minas area. In particular the transformers at the existing New Minas substation are approaching overload and projected load increase. This project was recommended in the 2008 distribution planning study, "22V-New Minas, 36V-Hillaton, 50V-Klondike Report No. 261-0608-W66.5".

## Why do this project now?

This project is required at this time to address growth issues in the New Minas area and to minimize unplanned outages due to protection trips.

## Why do this project this way?

This circuit breaker is necessary to provide a line termination for a 138 kV transmission line to a proposed new substation in the Prospect Road area of New Minas.

Based on the scope of the work and availability of NSPI’s Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO		38,842	0	38,842
094		094 - Interest Capitalized		9,007	0	9,007
095		095-COPS Contracts AO			0	
095		095-Thermal Regular Labour AO		2,880	0	2,880
095		095-COPS Regular Labour AO		59,171	0	59,171
001	003	001-T\&D Regular Labour	003 - TP - Bldg.,Struct.Grnd.	1,342	0	1,342
002	003	002 - T\&D Overtime Labour	003 - TP - Bldg.,Struct.Grnd.	0	0	0
012	003	012 - Materials	003 - TP - Bldg.,Struct.Grnd.	78,821	0	78,821
013	003	013 - COPS Contracts	003 - TP - Bldg.,Struct.Grnd.		0	
066	003	066 - Other Goods \& Services	003 - TP - Bldg.,Struct.Grnd.	10,592	0	10,592
001	022	001-T\&D Regular Labour	022-TP - Elec Contr.Equip.	9,059	0	9,059
002	022	002 - T\&D Overtime Labour	022 - TP - Elec Contr.Equip.	0	0	0
012	022	012 - Materials	022 - TP - Elec Contr.Equip.	93,725	0	93,725
013	022	013 - COPS Contracts	022 - TP - Elec Contr.Equip.		0	
066	022	066 - Other Goods \& Services	022-TP - Elec Contr.Equip.	23,000	0	23,000
001	023	001 - T\&D Regular Labour	023 - TP - Power Equip.-Station S	671	0	671
002	023	002-T\&D Overtime Labour	023 - TP - Power Equip.-Station S	0	0	0
012	023	012 - Materials	023 - TP - Power Equip.-Station S	748	0	748
001	043	001-T\&D Regular Labour	043 - TP - Substn Dev.	20,256	0	20,256
002	043	002-T\&D Overtime Labour	043 - TP - Substn Dev.	0	0	0
012	043	012 - Materials	043 - TP - Substn Dev.	219,800	0	219,800
001	085	001 - THERMAL Regular Labour	085 Design	11,994	0	11,994
002	085	002 - THERMAL Overtime Labour	085 Design	0	0	0
066	085	066 - Other Goods \& Services	085 Design	1,150	0	1,150
001	086	001 - T\&D Regular Labour	086 Commissioning	45,328	0	45,328
002	086	002-T\&D Overtime Labour	086 Commissioning	0	0	0
013	087	013-COPS Contracts	087 Field Super.\& Ops.		0	
			Total Cost: Original Cost:	738,632	0	738,632

The following is a breakdown of costs associated with the Canaan Road Line Terminal Project.

Administrative Overhead and Interest Materials
Contracts
COPS Labour
Other


Total
$\$ 738,632$

This work is expected to be completed by a contractor at an estimated rate of \$ per standard work unit hour. The COPS Labour portion includes supervision and engineering design. The materials amount of this project is based on costs associated with similar projects.

The planning study referenced for this project is provided in CI 40322, Confidential Attachment 1.

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40296

Title: 2011 Transmission Steel Tower Painting
Start Date: 2011/05
Final Cost Date: 2011/07
Function: Transmission
Forecast Amount: \$587,142

## DESCRIPTION:

This item provides for the cost to apply anti-corrosive paint to four lattice steel towers that comprise the crossing of the Halifax Harbour at the 'Narrows'. These crossings were constructed in the late 1950's and field inspection has indicated that these towers are beginning to experience surface corrosion.

Summary of Related CI's +/- 2 years
This is a multi-year program that will continue beyond 2011. Future CIs TBD.

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Maintenance
Why do this project?
These towers are exposed to an aggressive marine environment and are experiencing corrosion from the salt laden environment.

## Why do this project now?

These four towers require repainting in 2011 to reduce the loss of metal, which will extend the life of the towers. These towers support L-6014 which forms part of the looped transmission service to Peninsular Halifax.

## Why do this project this way?

The most cost effective approach is to repaint the steel towers prior to the corrosion penetrating the existing paint and contacting the metal after which painting is no longer an effective mitigation solution.

Parent CI Number			-		Approved Date	
	Cost	entre : 800	00-Services - Admin.		Budget Version	2011 ACE Plan
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO		12,161	0	12,161
094		094 - Interest Capitalized		1,412	0	1,412
095		095-COPS Contracts AO			0	
095		095-Thermal Regular Labour AO			0	
095		095-COPS Regular Labour AO		18,526	0	18,526
001	037	001 - T\&D Regular Labour	037-TP - Steel Towers	24,000	0	24,000
013	037	013 - COPS Contracts	037-TP - Steel Towers		0	
001	085	001 - THERMAL Regular Labour	085 Design		0	
				587,142	0	587,142

Original Cost:

## CI 40296-2011 Transmission Steel Tower Painting

The following is a breakdown of costs associated with the 2011 Transmission Steel Tower Painting Project.

Administrative Overhead and Interest Contracts
COPS Labour
Total

\$587,142

This work is expected to be completed by a contractor with NSPI supervision. Estimates were based on discussions with those who perform this type of work. The COPS labour portion includes supervision and engineering design for completion of this work.

# Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan 

## CI Number: 40279

Title: 2011 Pole Retreatment

Start Date:	$2011 / 05$
Final Cost Date:	$2011 / 10$
Function:	Transmission
Forecast Amount:	$\$ 516,341$

## DESCRIPTION:

This project provides for the cost of re-treatment of approximately 5000 transmission poles.
Summary of Related CI's +/- 2 years
2009 - CI 335632009 Pole Retreatment \$498,547
2010 - CI 388602010 Pole Retreatment \$495,505
This is a multi-year program that will continue beyond 2011.Future CIs TBD.

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Maintenance
Why do this project?
Pole re-treatment is a cost effective approach to extend the life of the pole.
Why do this project now?
NSPI re-instated the pole re-treatment program in 2006, a decision supported by the UARB following the November, 2004 Storm Hearing.

Why do this project this way?
Cycle based pole re-treatment is a cost effective way to extend the life of treated wood poles.

- 2011 Pole Retreatment



## CI 402792011 Pole Retreatment

The following is a breakdown of costs associated with the 2011 Pole Retreatment Project.
Administrative Overhead and Interest
Contracts
Materials
COPS Labour


Other
\$26,500
\$8,000
Total
$\$ 516,341$

This work is expected to be completed by an external contractor with NSPI supervision. Estimates of contacts and materials are based on actual costs incurred in this program in previous years. The COPS labour portion includes NSPI supervision for completion of this work. The list of lines to be completed in 2011 is as follows:

LINES	OPERATING SECTION NUMBER AND NAME	APPROX   POLES
5017	Five Points 20V to Canaan Road 43V	272
5025	Paradise 11V to Tremont 51V	402
5026	Gulch 13V to Paradise 11V	604
5035	Hells Gate 3V to Canaan Road 43V	10
5042	Farrell Street 99H to Albro Lake 62H	23
5048	East Green Harbour 36W to Lockport 37W	95
5050	Sissiboo 15V to Fourth Lake 91V	198
5057	Tap off L5026 to Cornwallis	30
5500	Trenton 50N to Bridge Ave 62N	160
5530	Milton 50W to Souriquois 30W	960
5538	Sissiboo 15V to Weymouth 16V	92
6516	Port Hastings 2C to Victoria Junction 2S	1017
6521	Port Tupper 1C to Point Tupper Terminal 46C	30
6543	Port Hastings 2C to 3C	5
7011	Port Hastings 2C to Lingan 88S	1214
		$\mathbf{5 1 1 2}$
TOTALS		

## CI Number: 40321

Title: Install Canaan Road to Prospect Road Transmission Line

Start Date:	$2011 / 12$
Final Cost Date:	$2012 / 12$
Function:	Transmission
Forecast Amount:	$\$ 2,024,763$

## DESCRIPTION:

This project provides for costs associated with the construction of a $4.3 \mathrm{~km}, 138 \mathrm{kV}$ transmission line from Canaan Road Substation to a new substation in the Prospect Road area of New Minas.

Summary of Related CI's +/- 2 years:
2011-40322 Prospect Road Substation \$3,068,581
2011 - 40323 Canaan Road Line Terminal \$738,632
2011 - 38841 New Minas Land Purchase and Rights of Way \$593,776

## JUSTIFICATION:

Justification Criteria: Transmission Plant
Sub Criteria: Requirement to Serve

## Why do this project?

This project is necessary to accommodate load growth in the New Minas area. The transformers at the existing New Minas substation are approaching overload. This project was recommended in the 2008 distribution planning study, "22V-New Minas, 36V-Hillaton, 50V-Klondike Report No. 261-0608-W66.5".

## Why do this project now?

This project is required at this time to address growth issues in the New Minas area and to minimize unplanned outages due to protection trips.

## Why do this project this way?

The construction of a 138 kV transmission line from Canaan Road is required to supply a new substation in the Prospect Road area of New Minas.

Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.


Original Cost:

## CI 40321 Install Canaan Road to Prospect Road Transmission Line

The following is a breakdown of costs associated with the Canaan Road to Prospect Road Transmission Line Project.

Administrative Overhead and Interest Contracts
Materials
COPS Labour
Royalties and Easements
Total

\$2,024,763

The contract portion of this work is expected to be completed by a contractor at an estimated rate of $\$$ per standard work unit hour. The COPS labour portion includes supervision and engineering design. There is \$ included in this project for obtaining easements along the proposed route of this new transmission line.

The planning study referenced for this project is provided in CI 40322, Confidential Attachment 1.

# Distribution 

## Nova Scotia Power Inc. <br> 2011 Annual Capital Expenditure Plan

## 4 DISTRIBUTION

(Millions of Dollars)

### 4.1 Five Year Plan and Highlights



- Distribution capital in 2011 focuses on New Customer growth and customer reliability.
- Year 2011 distribution capital is comprised of the following:
o \$8.0M New items with total spend greater than \$250K seeking ACE approval
o $\quad \$ 5.8 \mathrm{M}$ New items with total spend greater than $\$ 250 \mathrm{~K}$ for individual approval
o $\quad \$ 1.5 \mathrm{M}$ New items with total spend less than $\$ 250 \mathrm{~K}$
o \$0.3M Carryover Spending
o \$47.6M Routine Capital Spending


### 4.2 Distribution - Carryover Spending

Project   Number CI Number	Project Title			Previous   Expenditure	2011 Budget	Subsequent   Spending	Total Estimate

## Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

### 4.3 Distribution - New Item Spending

Tab\#	CI\#	Project Title	2011 Budget	Project Total
D1	25575	Reliability Keltic Drive New Feeder	$\$ 1,205,023$	$\$ 1,205,023$
D2	40224	78W-301 Second Peninsula	$1,010,713$	$1,010,713$
D3	40226	Sluice Pt 3rd Phase Addition 102W-312	606,307	606,307
D4	40204	70W-322 Starr Street Rebuild	546,821	546,821
D5	40202	39N Maccan Conversion	538,646	538,646
D6	39272	2011 Distribution Feeder Ties	500,000	500,000
D7	40379	Scotch Village Phase 2	458,177	458,177
D8	39269	2011 Recloser Additions	444,765	444,765
D9	40203	103W-311 Gold River Phase 1	434,415	434,415
D10	40220	2011 Halifax Underground Cable Replacement	418,861	418,861
D11	40338	16W-301 Hebron Reconductor	350,000	350,000
D12	40328	Feeder Exit Cable Replacements	317,587	317,587
D13	40211	2011 3H/6H Replacement Program	306,895	306,895
D14	40385	88W-323G Pinkney's Point Part 2	295,351	295,351
D15	40273	101H-411 Targeted Feeder Replacements	273,399	273,399
D16	40265	77V-401 Targeted Feeder Replacements	267,321	267,321
		$\$ 7,974,281$	$\$ 7,974,281$	

Where NSPI has forecast contract forces to perform Transmission and Distribution work, certain assumptions have been included with regards to the activities and items in the contract price to make the rate essentially all inclusive versus the NSPI labor rate. These same items are accounted for separately and are not reflected in the labour accounts/ person day rate the NSPI cost estimate provides when NSPI is to perform the work activity.

## CI Number: 25575

Title: Reliability Keltic Drive New Feeder
Start Date: 2011/04
Final Cost Date: 2011/12
Function: Distribution
Forecast Amount: \$1,205,023

## DESCRIPTION:

This project is for the distribution work required in constructing a new overhead 25 kV feeder from the Keltic Drive Substation. The source for this feeder will be provided by a second project CI\#25391 in 2010 "Add a New 25 kV Bus at the Keltic Drive Substation". This feeder will extend from the Keltic Drive Substation along Route \#4 to Howie Center where it will supply a portion of the load off overloaded feeders 11S-303 and 11S-411.

Summary of Related CI's +/- 2 years:
2010 CI 33766 11S-411 Targeted Feeder Replacements \$817,950
2010 CI 2539125 kV Bus Keltic Drive Substation \$671,843

## JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Overloaded Equipment

## Why do this project?

This work is being done as part of the overall customer reliability improvement investment. This is year two of a five year (2010-2014) plan to improve reliability to NSPI's customers. This project is required to offload the existing 25 kV feeder.

Why do this project now?
This project will improve reliability to customers by reconfiguring this feeder and will offload the existing feeder. In addition to alleviating the overload conditions, annual reliability savings of approximately 4,200 customer hours of interruption are expected for the Howie Center area once voltage conversion and the new feeder source line is complete.

## Why do this project this way?

The completion of this work will reduce outages and improve reliability on this feeder.

CI Number : 25575			- Reliability Keltic Drive New Feeder		Project Number	
Parent Cl Number			-		Approved Date	
	Cost	entre : 800	- 800-Services - Admin.		Budget Version	2011 ACE Plan
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Lab		142,806	0	142,806
094		094 - Interest Capitalized		25,681	0	25,681
095		095-COPS Contracts AO		$\square$	0	
095		095-COPS Regular Labour		217,549	0	217,549
001	035	001 - T\&D Regular Labour	035 - DP - Wood Poles	87,734	0	87,734
012	035	012 - Materials	035 - DP - Wood Poles		0	
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
098	035	098 - Salvage	035 - DP - Wood Poles	(912)	0	(912)
001	039	001 - T\&D Regular Labour	039 - DP - O/H Cond.	110,590	0	110,590
012	039	012 - Materials	039 - DP - O/H Cond.	$\square$	0	$\square$
098	039	098 - Salvage	039 - DP - O/H Cond.	$(1,046)$	0	$(1,046)$
001	040	001 - T\&D Regular Labour	040 - DP - O/H Cond.Devices	3,377	0	3,377
012	040	012 - Materials	040 - DP - O/H Cond.Devices		0	
098	040	098 - Salvage	040 - DP - O/H Cond.Devices	(250)	0	(250)
001	041	001 - T\&D Regular Labour	041 - DP - O/H Line Transf.	33,215	0	33,215
012	041	012 - Materials	041 - DP - O/H Line Transf.		0	
098	041	098 - Salvage	041 - DP - O/H Line Transf.	$(29,981)$	0	$(29,981)$
001	050	001 - T\&D Regular Labour	050 - DP - Street Lights	2,112	0	2,112
012	050	012 - Materials	050 - DP - Street Lights	$\square$	0	
001	052	001 - T\&D Regular Labour	052 - DP - Services	9,806	0	9,806
012	052	012 - Materials	052 - DP - Services		0	
098	052	098 - Salvage	052 - DP - Services	(88)	0	(88)
001	087	001 - T\&D Regular Labour	087 Field Super.\& Ops.	35,000	0	35,000
			Total Cost:	1,205,023	0	1,205,023
			Original Cost:	108,897		

## CI 25575 - Reliability Keltic Drive New Feeder

The following is a breakdown of costs associated with the Keltic Drive New Feeder Project.

Administrative Overheads and Interest Labour
Materials
Contracts
Salvage
Total

\$1,205,023

The $\$ 281,834$ internal labour estimate for this project is based on an internal rate of per person day. The materials estimate of $\$$ is for the cost of electrical equipment including poles, hendrix cable and associated hardware and is based on supplier information and previous projects. The contract estimate of \$ is for land rights and permitting.

## CI Number: 40224

Title: 78W-301 Second Peninsula
Start Date: 2011/08
Final Cost Date: 2011/10
Function: Distribution
Forecast Amount: $\quad \$ 1,010,713$

## DESCRIPTION:

This project provides for the rebuild of the existing single phase line on Second Peninsula and the addition of a second phase that will be used to express-feed Heckman's Island. Both of these phases will be constructed using Hendrix Cable, an insulated conductor that uses special brackets to cluster the cable in such a way as to minimize the amount of clearance required from surrounding objects (trees, other electrical circuits etc.). Hendrix cable is used in areas where contact from trees is common to minimize outages.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Outage Performance

## Why do this project?

This project is required to improve the reliability of $78 \mathrm{~W}-301 \mathrm{G}$ through the addition of a new phase, and the use of Hendrix Cable.

## Why do this project now?

This project will improve the reliability of the power supply to Second Peninsula and Heckman's Island.

## Why do this project this way?

This project will implement a newer technology in an area that is prone to outages caused by tree contact.
Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

CI Number : 40224			- 78W-301 Second Peninsula		Project Number	
Parent CI Number			-		Approved Date	
Cost Centre : 800			- 800-Services - Admin.		Budget Version	2011 ACE Plan
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		9,783	0	9,783
095		095-COPS Contracts AO			0	
013	002	013 - COPS Contracts	002 - DP - Land Rights		0	
012	035	012 - Materials	035 - DP - Wood Poles	36,068	0	36,068
013	035	013 - COPS Contracts	035 - DP - Wood Poles	倍	0	
012	039	012 - Materials	039 - DP - O/H Cond.	120,330	0	120,330
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
012	040	012 - Materials	040 - DP - O/H Cond.Devices	3,684	0	3,684
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	
098	040	098 - Salvage	040 - DP - O/H Cond.Devices	(344)	0	(344)
012	041	012 - Materials	041 - DP - O/H Line Transf.	7,299	0	7,299
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
013	050	013 - COPS Contracts	050 - DP - Street Lights	-	0	
012	052	012 - Materials	052 - DP - Services	2,433	0	2,433
013	052	013 - COPS Contracts	052 - DP - Services	-	0	
			Total Cost:	1,010,713	0	1,010,713
			Original Cost:	91,733		

## CI 40224-78W-301 Second Peninsula

The following is a breakdown of costs associated with the 78W-301 Second Peninsula Project.

Administrative Overhead and Interest Materials
Contracts
Other
Total

\$1,010,713

The contracted work associated with this project is proposed to be completed by a contractor at a budgeted rate of \$ per standard work unit hour. The cost of Hendrix cable, included in the materials cost of $\$ 169,814$ was obtained from a supplier while all other material costs are based on previous projects of a similar nature.

## CI Number: 40226

Title: Sluice Pt $3^{\text {rd }}$ Phase Addition 102W-312
Start Date: 2011/04
Final Cost Date: 2011/09
Function: Distribution
Forecast Amount: $\$ 606,307$

## DESCRIPTION:

This project will add a third phase to the feeder 102W-312 along Highway 308, to balance the load on the existing two phases. The third phase will extend from Highway \#3 to Chemin des Bouleaux, approximately 7 kms . This will aid in balancing the load, as well as coordinating protection. Removal of the old conductor will be required, as well as the upgrading of some insulators and cross arms.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Requirement to Serve

## Why do this project?

Currently, the two existing phases are unbalanced and the coordination of protection devices is difficult.
Why do this project now?
The current unbalanced condition affects the reliability in the area. Adding a third phase will balance the load and improve the ability to coordinate protective devices.

Why do this project this way?
This is the only reasonable option to balance the existing load.
Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

- Sluice Pt PH 3 Addition 102W-312

Project Number

Parent Cl Number			-		Approved Date	
	Cost	entre : 800	- 800-Services - Admin.		Budget Version	2011 ACE Plan
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		6,386	0	6,386
095		095-COPS Contracts AO			0	
013	002	013 - COPS Contracts	002 - DP - Land Rights	$\square$	0	$\square$
012	035	012 - Materials	035 - DP - Wood Poles	15,004	0	15,004
013	035	013 - COPS Contracts	035 - DP - Wood Poles	$\square$	0	
012	039	012 - Materials	039 - DP - O/H Cond.	36,975	0	36,975
013	039	013 - COPS Contracts	039 - DP - O/H Cond.	$\square$	0	
012	040	012 - Materials	040 - DP - O/H Cond.Devices	3,175	0	3,175
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices	$\square$	0	$\square$
012	041	012 - Materials	041 - DP - O/H Line Transf.	7,228	0	7,228
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
013	052	013 - COPS Contracts	052 - DP - Services		0	
			Total Cost:	606,307	0	606,307
			Original Cost:	37,461		

## CI 40226 - Sluice Pt PH 3 Addition 102W-312

The following is a breakdown of costs associated with the 102W-312 Sluice Pt Phase 3 Addition Project.

Administrative Overhead and Interest Materials
Contracts


Total
\$606,307

The contracted work associated with this project is proposed to be completed by a contractor at a budgeted rate of $\$$ per standard work unit hour. There is $\$$ included as contracts for land rights. The material cost of this project is based on similar projects in the past.

## CI Number: 40204

Title: 70W-322 Starr Street Rebuild
Start Date: 2011/01
Final Cost Date: 2011/07
Function: Distribution
Forecast Amount: \$546,821

## DESCRIPTION:

This project results from the 2007 Planning Study, 244-11 06-W65 "Bridgewater East (89W)". This study outlined the need for the reconductoring of $70 \mathrm{~W}-322$ to enable the transfer schemes, between $89 \mathrm{~W}-304$ and $89 \mathrm{~W}-301$. The circuit will be reconductored with 336ACSR, as the current conductor is overloaded. Poles will be replaced on Starr St. to provide adequate spacing between existing equipment and the new conductors.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Overloaded Equipment
Why do this project?
The current conductor is overloaded and has limited capacity for contingency loads.

## Why do this project now?

This project is required to relieve overloaded equipment and will improve the reliability to customers, through the increased capacity for load transfers, as recommended in the planning study.

Why do this project this way?
This project was recommended in the attached 2007 Planning Study, 244-11 06-W65 "Bridgewater East (89W)", to be the most cost effective solution to serve the area, in a reliable manner.

Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		4,459	0	4,459
095		095-COPS Contracts AO			0	
013	002	013 - COPS Contracts	002 - DP - Land Rights	-	0	
012	035	012 - Materials	035 - DP - Wood Poles	35,437	0	35,437
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
098	035	098 - Salvage	035 - DP - Wood Poles	$(5,442)$	0	$(5,442)$
012	039	012 - Materials	039 - DP - O/H Cond.	20,391	0	20,391
013	039	013 - COPS Contracts	039-DP - O/H Cond.		0	
098	039	098 - Salvage	039 - DP - O/H Cond.	(295)	0	(295)
012	040	012 - Materials	040 - DP - O/H Cond.Devices	579	0	579
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	
012	041	012 - Materials	041 - DP - O/H Line Transf.	7,617	0	7,617
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
098	041	098 - Salvage	041 - DP - O/H Line Transf.	$(1,130)$	0	$(1,130)$
012	042	012 - Materials	042 - DP - O/H Ln.Transf.Dev.	1,822	0	1,822
013	042	013-COPS Contracts	042 - DP - O/H Ln.Transf.Dev.		0	
098	042	098 - Salvage	042 - DP - O/H Ln.Transf.Dev.	$(1,368)$	0	$(1,368)$
012	050	012 - Materials	050 - DP - Street Lights	74	0	74
013	050	013-COPS Contracts	050 - DP - Street Lights		0	
012	052	012 - Materials	052 - DP - Services	1,393	0	1,393
013	052	013 - COPS Contracts	052 - DP - Services		0	
098	052	098 - Salvage	052 - DP - Services	(54)	0	(54)
			Total Cost:	546,821	0	546,821
			Original Cost:	36,011		

## CI 40204 70W-322 Starr Street Rebuild

The following is a breakdown of costs associated with the 70W-322 Starr Street Rebuild Project.

Administrative Overhead and Interest Materials
Contracts
Salvage
Total
$\$ 546,821$

The contracted work associated with this project is proposed to be completed by a contractor at a budgeted rate of \$ per standard work unit hour. There is \$ included as contracts for land rights. The material cost of this project is based on similar projects in the past.

Pages 1743-1768 have been removed due to confidentiality.

## CI Number: 40202

Title: 39N Maccan Conversion
Start Date: 2011/01
Final Cost Date: 2011/06
Function: Distribution
Forecast Amount: $\$ 538,646$

## DESCRIPTION:

This project is for the work required for the retirement of the 25 kV to 4 kV Maccan Stepdown Transformer, 39N201. The current stepdown is an oil filled device which is rusting. The transformer is more than 50 years old and is nearing the end of its useful life. This project will also upgrade the current feeder, 39N-201, towards Maccan East, from 4 kV to 25 kV distribution, for improved reliability. This load will continue to be serviced by the 30N-411 feeder. The project will include the removal of the current stepdown transformer, as well as upgrading of the down line equipment.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

## JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Equipment Replacement

## Why do this project?

This project is required to remove the 39N Maccan Stepdown from service, as the equipment is oil filled and rusting.

## Why do this project now?

The 39N Maccan Stepdown is more than 50 years old and is approaching the end of its useful life. Retirement reduces the potential for a lengthy unplanned outage, due to transformer failure and the potential environmental risk is mitigated.

## Why do this project this way?

Replacement of the deteriorated equipment in this manner is the most cost effective option.
Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		4,516	0	4,516
095		095-COPS Contracts AO		-	0	
013	002	013 - COPS Contracts	002 - DP - Land Rights		0	
012	035	012 - Materials	035 - DP - Wood Poles	22,339	0	22,339
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
098	035	098 - Salvage	035 - DP - Wood Poles	$(7,122)$	0	$(7,122)$
012	039	012 - Materials	039 - DP - O/H Cond.	18,623	0	18,623
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
098	039	098 - Salvage	039 - DP - O/H Cond.	$(12,660)$	0	$(12,660)$
012	040	012 - Materials	040 - DP - O/H Cond.Devices	4,914	0	4,914
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	$\square$
098	040	098 - Salvage	040 - DP - O/H Cond.Devices	0	0	0
012	041	012 - Materials	041 - DP - O/H Line Transf.	65,480	0	65,480
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
098	041	098 - Salvage	041 - DP - O/H Line Transf.	$(22,890)$	0	$(22,890)$
012	050	012 - Materials	050 - DP - Street Lights	1,000	0	1,000
013	050	013 - COPS Contracts	050 - DP - Street Lights	-	0	$\square$
098	050	098 - Salvage	050 - DP - Street Lights	(5)	0	(5)
012	052	012 - Materials	052 - DP - Services	862	0	862
013	052	013 - COPS Contracts	052 - DP - Services		0	
098	052	098 - Salvage	052 - DP - Services	(119)	0	(119)
			Total Cost:	538,646	0	538,646
			Original Cost:	31,769		

## CI 40202 39N Maccan Conversion

The following is a breakdown of costs associated with the 39 N Maccan Conversion Project.

Administrative Overhead and Interest Materials
Contracts
Salvage
$\$ 113,218$
$\$$
$(\$ 42,796)$
\$538,646

The contracted work associated with this project is proposed to be completed by a contractor at a budgeted rate of $\$$ per standard work unit hour. There is included as contracts for land rights. The material cost of this project is based on similar projects in the past.

## CI Number: 39272

Title: 2011 Distribution Feeder Ties
Start Date: 2011/05
Final Cost Date: 2011/10
Function: Distribution
Forecast Amount: $\quad \$ 500,000$

## DESCRIPTION:

This item provides for the costs associated with reconductoring sections of lines to enable them to be interconnected. This allows for the transfer of customers to an adjacent feeder during an outage. This process will reduce the length of the outage to customers on the affected circuit. Targeted feeder interconnections are 79V-403 / 1V-443.

Summary of Related CI's +/- 2 years
2010-38847 2010 Distribution Feeder Ties - \$496,042
2012- CIs TBD
2013- CIs TBD

## JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Outage Performance
Why do this project?
This work is being done as part of the overall customer reliability improvement investment. This is year two of a five year (2010-2014) plan to improve reliability to NSPI's customers. This project is required in order to improve reliability by enabling the transfer of customers between feeders during outages.

## Why do this project now?

This project will improve system reliability, with an expected annual savings of 3,200 customer hours of interruption

Why do this project this way?
This is the most cost effective and efficient way to create feeder interconnections between these circuits.
Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

- 2011 Distribution Feeder Ties

Parent CI Number			800-Services - Admin.		Approved Date	
	Cost C	entre : 800			Budget Version	2011 ACE Plan
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		5,688	0	5,688
095		095-COPS Contracts AO			0	
001	035	001 - T\&D Regular Labour	035-DP - Wood Poles	0	0	0
002	035	002 - T\&D Overtime Labour	035 - DP - Wood Poles	0	0	0
012	035	012 - Materials	035 - DP - Wood Poles	30,056	0	30,056
013	035	013 - COPS Contracts	035 - DP - Wood Poles	$\square$	0	$\square$
001	039	001 - T\&D Regular Labour	039 - DP - O/H Cond.	0	0	0
002	039	002 - T\&D Overtime Labour	039 - DP - O/H Cond.	0	0	0
012	039	012 - Materials	039 - DP - O/H Cond.	31,700	0	31,700
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
001	040	001 - T\&D Regular Labour	040 - DP - O/H Cond.Devices	0	0	0
002	040	002 - T\&D Overtime Labour	040 - DP - O/H Cond.Devices	0	0	0
012	040	012 - Materials	040 - DP - O/H Cond.Devices	50,426	0	50,426
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	
			Total Cost:	500,000	0	500,000
			Original Cost:	337,807		

## CI 392722011 Distribution Feeder Ties

The following is a breakdown of costs associated with the 2011 Distribution Feeder Ties Project.

Administrative Overhead and Interest Materials
Contracts
Total


The contracted work associated with this project is proposed to be completed by a contractor at a budgeted rate of per standard work unit hour. The material cost of this project is based on a similar project, CI 38847 Distribution Feeder Ties, which was submitted in the 2010 Annual Capital Expenditure Plan.

## CI Number: 40379

Title: Scotch Village Phase 2
Start Date: 2011/05
Final Cost Date: 2011/12
Function: Distribution
Forecast Amount: \$458,177

## DESCRIPTION:

This project is the second phase of a three year program to replace deteriorated plant along Highway 236 from Scotch Village toward Stanley \& Clarksville. This will involve the replacement of deteriorated poles, conductor, and devices as required to improve the reliability of the line. A portion of this project was completed in 2010 under the Deteriorated Plant Routine.

Summary of Related CI's +/- 2 years:
2010 CI 23158 - Unplanned Replace Deteriorated Plant Routine \$6,487,745

## JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Equipment Replacement

## Why do this project?

This project is required to replace deteriorated equipment that is affecting the reliability of 624V-311.
Why do this project now?
Due to the age of the plant on this feeder, deterioration is negatively affecting reliability.
Why do this project this way?
The completion of this work will reduce outages and improve reliability on this feeder.
Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

CI Number : 40379			- Scotch Village Phase 2		Project Number	
Parent Cl Number			-		Approved Date	
Cost Centre : 800			- 800-Services - Admin.		Budget Version	2011 ACE Plan
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		8,294	0	8,294
095		095-COPS Contracts AO			0	
098		098 - Salvage		$(6,067)$	0	$(6,067)$
013	002	013 - COPS Contracts	002 - DP - Land Rights		0	
012	035	012 - Materials	035 - DP - Wood Poles	20,886	0	20,886
013	035	013 - COPS Contracts	035 - DP - Wood Poles	-	0	
012	039	012 - Materials	039 - DP - O/H Cond.	18,041	0	18,041
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
012	040	012 - Materials	040 - DP - O/H Cond.Devices	1,158	0	1,158
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices	$\square$	0	
012	041	012 - Materials	041 - DP - O/H Line Transf.	21,796	0	21,796
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
013	050	013 - COPS Contracts	050 - DP - Street Lights	$\square$	0	-
012	052	012 - Materials	052 - DP - Services	489	0	489
013	052	013-COPS Contracts	052 - DP - Services	T	0	-
			Total Cost:	458,177	0	458,177
			Original Cost:	39,279		

## CI 40379 - Scotch Village Phase 2

The following is a breakdown of costs associated with the Scotch Village Phase 2 Project.

Administrative Overhead and Interest Materials
Contracts
Salvage
Total
\$458,177

The contracted work associated with this project is proposed to be completed by a contractor at a budgeted rate of \$ per standard work unit hour. There is \$ of contracts associated with land rights. The material cost of this project is based on similar projects in the past.

## CI Number: 39269

Title: 2011 Recloser Additions

Start Date:	$2011 / 02$
Final Cost Date:	$2011 / 12$
Function:	Distribution
Forecast Amount:	$\$ 444,765$

## DESCRIPTION:

This item provides for the installation of additional reclosers to provide sectionalizing points on specified feeders. In 2011 it is proposed to add or change out reclosers associated with 9 distribution circuits. Feeder selection is based on Customer Interruptions (CI) x Customer Hours (CH) weighting for full feeder outages that were not caused by loss of transmission. The feeders involved in this project are $1 \mathrm{~N}-405$ ( 25 kV feeder out of Onslow toward Bible Hill), 79V401 ( 25 kV feeder out of Three Mile Plains toward Newport Corner), 64V-301 (12 kV feeder out of Greenwood Village toward Torbrook Mines), 55V-314 (12 kV feeder out of Waterville toward Aylesford), 1N-421 ( 25 kV feeder out of Onslow toward Walker St.), 65V-303 (12 kV feeder out of Middleton toward Lower Middleton), 82S-304 (12 kV feeder out of Whitney Pier toward South Bar), 137H-412 ( 25 kV feeder out of Hammonds Plains), 18V-413 (25 kV feeder out of Upper Burlington toward Scotch Village).

```
Summary of Related CI's +/- 2 years:
2009-35642 2009 Recloser Additions $1,512,766
2010-38022 2010 Recloser Additions $1,400,271
2012- CIs TBD
2013- CIs TBD
```


## JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Outage Performance

## Why do this project?

This work is being done as part of the overall customer reliability improvement investment. This is year two of a five year (2010-2014) plan to improve reliability to NSPI's customers. This project is required to improve distribution reliability on feeders. An estimated 5,445 customer interruptions and 9,950 customer hours of interruption will be avoided each year through improved feeder sectionalizing and automatic restoration of unfaulted feeder segments.

## Why do this project now?

This project will provide improved reliability through avoided customer interruptions.

## Why do this project this way?

This project will provide improved reliability through avoided customer interruptions. Appropriate sectionalizing of a feeder will improve outage statistics. For instance, installing a recloser at $50 \%$ of the length of a feeder with $50 \%$ of the customer count before and after the recloser will result in a $25 \%$ (on average) improvement in both the System Average Interruption Frequency Index (SAIFI) and the System Average Interruption Duration Index (SAIDI) statistics. The reduction in customer outages will improve customer service.

Parent CI Number	$:$
Cost Centre	$: 800$

Approved Date
: 800

- 800-Services - Admin

Budget Version
2011 ACE Plan

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO		25,542	0	25,542
094		094 - Interest Capitalized		7,319	0	7,319
095		095-COPS Contracts AO		2,346	0	2,346
095		095-COPS Regular Labour AO		38,910	0	38,910
001	035	001-T\&D Regular Labour	035 - DP - Wood Poles	15,408	0	15,408
002	035	002-T\&D Overtime Labour	035 - DP - Wood Poles	0	0	0
012	035	012 - Materials	035 - DP - Wood Poles	85,000	0	85,000
013	035	013 - COPS Contracts	035 - DP - Wood Poles	5,000	0	5,000
066	035	066 - Other Goods \& Services	035 - DP - Wood Poles	10,240	0	10,240
001	039	001 - T\&D Regular Labour	039 - DP - O/H Cond.	10,000	0	10,000
002	039	002 - T\&D Overtime Labour	039 - DP - O/H Cond.	0	0	0
012	039	012 - Materials	039 - DP - O/H Cond.	85,000	0	85,000
013	039	013-COPS Contracts	039 - DP - O/H Cond.	0	0	0
001	040	001-T\&D Regular Labour	040 - DP - O/H Cond.Devices	25,000	0	25,000
002	040	002 - T\&D Overtime Labour	040 - DP - O/H Cond.Devices	0	0	0
012	040	012 - Materials	040 - DP - O/H Cond.Devices	130,000	0	130,000
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices	5,000	0	5,000
066	040	066 - Other Goods \& Services	040 - DP - O/H Cond.Devices	0	0	0
			Total Cost:	444,765	0	444,765
			Original Cost:	30,000		

## CI 392692011 Recloser Additions

The following is a breakdown of costs associated with the 2011 Recloser Additions project:

Administrative Overhead and Interest	$\$ 74,117$
Materials	$\$ 300,000$
Contracts	$\$ 10,000$
COPS Labour	$\$ 50,408$
Other	$\$ 10,240$
Total	$\$ 444,765$

This project will be completed by NSPI personnel at a rate of approximately per person day. The contract portion refers to traffic control. The material portion of the project is based on similar projects over the past two years.

## CI Number: 40203

Title: 103W-311 Gold River Phase 1
Start Date: 2011/03
Final Cost Date: 2011/06
Function: Distribution
Forecast Amount: $\$ 434,415$

## DESCRIPTION:

This project entails the reconductoring of approximately seven kilometres of feeder. This project has multiple phases that will be carried out over multiple years. The first phase of this project will begin south of Delbury Road, on Highway \#3, in the Western Shore area and heading south, for approximately 175 spans. The current conductor size will be increased to enable a contingency for load transferring.

Summary of Related CI's +/- 2 years:
2012 - CI TBD 103W-311 Gold River Phase 2 \$TBD
2013 - CI TBD 103W-311 Gold River Phase 3 \$TBD

## JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Requirement to Serve

## Why do this project?

The existing conductor is a combination of \#6 Cu and \#4 Al. This small wire is old and has limited capacity for loading.

## Why do this project now?

Reconductoring with a larger wire will improve reliability and provide loading contingency, at all times of the year.

## Why do this project this way?

This is the most efficient and effective method for increasing the contingency in this area. Reconductoring the small wire closest to the existing source, provides the capacity for load transfers.

Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.
CI Number : 40203

Parent CI Number			800-Services - Admin.		Approved Date	
	Cost C	entre : 800			Budget Version	2011 ACE Plan
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		2,437	0	2,437
095		095-COPS Contracts AO		$\square$	0	
013	002	013 - COPS Contracts	002 - DP - Land Rights	$\square$	0	
012	035	012 - Materials	035 - DP - Wood Poles	7,280	0	7,280
013	035	013 - COPS Contracts	035 - DP - Wood Poles	$\square$	0	$\square$
098	035	098 - Salvage	035 - DP - Wood Poles	(9)	0	(9)
012	039	012 - Materials	039 - DP - O/H Cond.	25,989	0	25,989
013	039	013 - COPS Contracts	039 - DP - O/H Cond.	$\square$	0	$\square$
098	039	098 - Salvage	039 - DP - O/H Cond.	$(2,810)$	0	$(2,810)$
012	040	012 - Materials	040 - DP - O/H Cond.Devices	5,429	0	5,429
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	$\square$
098	040	098 - Salvage	040 - DP - O/H Cond.Devices	(101)	0	(101)
012	041	012 - Materials	041 - DP - O/H Line Transf.	8,016	0	8,016
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
098	041	098 - Salvage	041 - DP - O/H Line Transf.	(42)	0	(42)
013	050	013 - COPS Contracts	050 - DP - Street Lights		0	
012	052	012 - Materials	052 - DP - Services	2,586	0	2,586
013	052	013 - COPS Contracts	052 - DP - Services		0	I
			Total Cost:	434,415	0	434,415
			Original Cost:	22,545		

## CI 40203 103W-311 Gold River Phase 1

The following is a breakdown of costs associated with the $103 \mathrm{~W}-311$ Gold River Phase 1 Project.

Administrative Overhead and Interest Materials
Contracts
Salvage


Total
$\$ 434,415$

The contracted work associated with this project is proposed to be completed by a contractor at a budgeted rate of $\$$ per standard work unit hour. There is $\$$ of contracts associated with land rights. The material cost of this project is based on similar projects in the past.

## CI Number: 40220

Title: 2011 Halifax Underground Cable Replacement
Start Date: 2011/04
Final Cost Date: 2011/09
Function: Distribution
Forecast Amount: $\$ 418,861$

## DESCRIPTION:

This project is required to replace 2.8 km of 3 phase, 25 kV underground cable between1H Water Street Substation and Proctor Street, as well as a section to the Art Gallery Vault.

Summary of Related CI's +/- 2 years:
2010-38903 Halifax UG Cable Replacement 1H-403 \& 405 \$456,405
2012 - CI TBD Halifax UG Cable Replacement
2013 - CI TBD Halifax UG Cable Replacement

## JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Deteriorated Conductor

## Why do this project?

This work is being done as part of the overall customer reliability improvement investment. This is year two of a five year (2010-2014) plan to improve reliability to NSPI's customers. This project is required to replace deteriorated underground 25 kV cables and accessories in downtown Halifax.

## Why do this project now?

This project is part of a plan to begin replacing cables installed 35 years ago, which have now reached the end of their useful life. The $1 \mathrm{H}-419$ feeder provides power to approximately 80 large commercial and residential customers in the downtown core area of Halifax.

## Why do this project this way?

Due to the age of the underground cables, a five year (2010-2014) replacement plan (Attachment 1) was developed and is being implemented. This is the most cost effective option to replace these assets.

CI Number : 40220

Parent CI Number	$:$
Cost Centre	$: 800$

Approved Date

- 800-Services - Admin

Budget Version
2011 ACE Plan

Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO			17,447	0	17,447
092		092-Vehicle T\&D OT Labour AO			7,990	0	7,990
094		094 - Interest Capitalized			6,159	0	6,159
095		095-COPS Overtime Labour AO			12,171	0	12,171
095		095-COPS Regular Labour AO			26,579	0	26,579
095		095-COPS Contracts AO			2,346	0	2,346
095		095-Thermal Regular Labour AO			1,200	0	1,200
001	046	001 - T\&D Regular Labour	046 - DP - U/G Conductor		34,433	0	34,433
002	046	002 - T\&D Overtime Labour	046 - DP - U/G Conductor		31,536	0	31,536
011	046	011 - Travel Expense	046 - DP - U/G Conductor		2,000	0	2,000
012	046	012 - Materials	046 - DP - U/G Conductor		259,000	0	259,000
013	046	013 - COPS Contracts	046 - DP - U/G Conductor		10,000	0	10,000
041	046	041 - Meals \& Entertainment	046 - DP - U/G Conductor		2,000	0	2,000
001	085	001 - THERMAL Regular Labour	085 Design		5,000	0	5,000
002	085	002 - THERMAL Overtime Labour	085 Design		0	0	0
011	085	011 - Travel Expense	085 Design		500	0	500
041	085	041 - Meals \& Entertainment	085 Design		500	0	500
				Total Cost:	418,861	0	418,861
				Original Cost:	105,000		

## CI 40220-2011 Halifax Underground Cable Replacement

The following is a breakdown of costs associated with the 2011 Halifax Underground Cable Replacement Project.

Administrative Overhead and Interest	$\$ 73,892$
Materials	$\$ 259,000$
Contracts	$\$ 10,000$
COPS Labour	$\$ 70,969$
Other	$\$ 5,000$
Total	$\$ 418,861$

This project will be completed by NSPI personnel at a rate of approximately per person day. The material portion of the project is based the costs of the 2010 Halifax Underground Cable Replacement Program, CI 38903 filed in the 2010 Annual Capital Expenditure Plan.

# DISTRIBUTION CAPITAL INVESTMENT REPORT HALIFAX 25 kV UNDERGROUND SYSTEM 

Draft
October 05, 2009

## TABLE OF CONTENTS

### 1.0 SUMMARY

### 2.0 PRESENT SYSTEM CONFIGURATION

2.1 Feeder Profiles
2.2 Load Check Summary
3.0 FEEDER CONTINGENCIES
3.1 Contingency Definitions
3.2 Contingency Options
3.3 Observations
4.0 REQUIRED SYSTEM IMPROVEMENTS
4.1 Art Gallery Tie
4.2 Scotia Square Tie
4.3 Other System Improvement Options
5.0 CABLE REPLACEMENT
5.1 Cable Lengths
5.2 Cable Accessories
5.3 Cable Sections
5.3.1 Feeder 1H-403
5.3.2 Feeder 1H-405
5.3.3 Feeder 1H-419
5.3.4 Feeder 1H-431
5.4 Budgeting for Cable Replacement
5.4.1 Estimates and Assumptions
5.4.2 Feeder Replacement Estimates
5.4.3 Service Replacement Estimates
5.5 Salvage
6.0 CABLE INJECTION
6.1 Description
6.2 Scope
6.3 Cable Replacement Part of the Cable Injection Option
6.4 Injection Estimates
7.0 CABLE REPLACEMENT vs. CABLE INJECTION
8.0 BUDGETARY TIMELINES
8.1 Cable Replacement Option

APPENDIX A - Cable Lengths and Available Ducts APPENDIX B - Primary Service Cables
APPENDIX C - Splices and Terminations
APPENDIX D - Art Gallery Tie (Details)
APPENDIX E - Deadfront Splice Specifications for 750 kcmil Cable

### 1.0 SUMMARY

Objective
The purpose of this report is to identify the requirements necessary to perform the cable replacement program in Downtown Halifax.

Scope
The scope of the report is limited to 25 kV feeders interconnected around the pole-free area of Downtown Halifax. The main components of the report are: overview of the present system configuration, review of the historic load check, cable inventory and categorization, review of manhole configurations and availability of spare ducts, basic feeder contingency assessment, system improvement proposals, budgeting and timelines. The existing 4 kV underground distribution system, substation contingencies and justifications for new feeder(s) are not covered in the report.

Recommendations
This report recommends that the replacement project be carried out over the next 5 years. The required expenditures have been prioritized. This report has considered the age of plant, the loading of the system from PI data and the reliability to customers connected to the underground system. Consideration has been given to prolonging cable life by injection of chemicals into existing cables.

Also, the report recommends two system improvement options that are necessary to improve the existing switching flexibility by establishing two new tie links. These changes should be made prior to the cable replacement program.


Fig. 2.1 Simplified Feeder Diagram
The diagram on Fig. 2.1 is a simplified combination of an electrical single line diagram and a geographical layout of the Halifax UD system. For simplicity, only open points are shown (except for the one at Scotia Square).

### 2.1 UNDERGROUND FEEDER PROFILES

The feeder profiles below describe each of the six underground feeders in a uniform format that will allow for easy comparison and quick reference further in the report. The underground feeders are: $1 \mathrm{H}-403,1 \mathrm{H}-405,1 \mathrm{H}-419,1 \mathrm{H}-424,1 \mathrm{H}-429$ and $1 \mathrm{H}-431$

1H-403 FEEDER PROFILE			
Scotia Square / Metro Center			
Total feeder length (including services)	7.8 km		
Built	1970's		
Route	Water, Sackville, Granville, Duke, 28H, Barrington, Agryle, Grafton, Market, Brunswick, Cogswell.		
Installed MVA	23		
Interties with feeders	1H-405, 1H-419, 104H-432, 104H-431		
Loops	Two		
Stepdowns	689H		
Primary services	CS431-048, 170, 139, 197, 184, 185, 198, 487, 510, 428, 036, 429, 637, 531, 430, 150, 227, 211, 162, 154, 001, 182, $270,426,046,144,143,265,216,244,573,402$		
Load profile for the last 3 years ending June 1, 2008.			
Underground Cable	Part of feeder	Conductor size [kcmil],[AWG]	Length, 3p [m]
	$\begin{array}{\|l\|} \hline \text { Main radial } \\ \hline \text { Loops } \\ \hline \end{array}$	750	1780
		750	2240
		500	180
		350	1550
	Ties	750	230
		500	180
	Primary services	750	90
		350	100
		3/0	1110
		1/0	470
		\#1	100


1H-405 FEEDER PROFILE			
Scotia Square			
Total feeder length (including services)	3.8 km		
Built	1970's		
Route	Water, Sackville, Granville, Duke, Scotia Square, Market, Cogswell		
Installed MVA	14 (approx.)		
Interties with feeders	1H-403, 1H-424		
Loops	One		
Stepdowns	28H-T26		
Primary services	CS431-007, 427, 005, 012, 507, 508, 481, 506		
Load profile for the last 3 years ending June 1, 2008.			
Underground Cable	Part of feeder	Conductor size   [kcmil],[AWG]	Length, 3ph [m]
	Main radial	750	1470
	23 kV loop	750	160
		350	1380
		4/0	180
		\#1	340
	Primary services	3/0	170
		\#1	10


1H-419 FEEDER PROFILE			
Joseph Howe Bldg./ Proctor Street			
Total feeder length (including services)	5.4 km		
Built	1970's		
Route	Water, Sackville, Granville, Duke, 28H, Hollis, 6H, Upper Water		
Installed MVA	14		
Interties with feeders	1H-403, 1H-431, 104H-422, 104H-442		
Loops	One		
Stepdowns	622 H		
Primary services	$\begin{aligned} & \text { CS431-351, 138, 196, 053, 268, 183, 272, 140, 004, 142, } \\ & 047,279,011,141,169 \end{aligned}$		
Load profile for the last 3 years ending June 1, 2008.	14419		
Underground Cable	Part of feeder	Conductor size   [kcmil],[AWG]	Length, 3p [m]
	Main radial	750	2140
	Loop	750	1290
		4/0	490
		3/0	640
	Tie	750	240
	Primary services	750	30
		3/0	100
		\#1	50


1H-424 FEEDER PROFILE			
Water Street/Scotia Square			
Total feeder length (including services)	2.0 km		
Built	2003		
Route	Water, Granville, Duke, 28H		
Installed MVA	3.9		
Interties with feeders	1H-405		
Loops	N/A		
Stepdowns	N/A		
Primary services	CS431-516, 493, 247, 485, 566, 567		
Load profile	No Load Profile Available		
Underground Cable	Part of feeder	Conductor size [kcmil],[AWG]	$\begin{gathered} \text { Length, 3ph } \\ {[\mathrm{m}]} \end{gathered}$
	Main radial	750	1600
	Primary services	350	270
		3/0	350
		\#1	150


1H-429 FEEDER PROFILE			
V.G. Hospital			
Total feeder length (including services)	2.2 km		
Built	1990's		
Route	Water, Morris, 10H		
Installed MVA	11.2		
Interties with feeders	2H-412		
Loops	N/A		
Stepdowns	10H-T1 VG - North Bus		
Primary services	N/A		
Load profile for the last 3 years ending June 1, 2008.			
Underground Cable	Part of feeder	Conductor size [kcmil],[AWG]	$\begin{aligned} & \text { Length, 3ph } \\ & {[\mathrm{m}]} \end{aligned}$
	Main radial	750	2200


1H-431 FEEDER PROFILE			
Downtown U/G			
Total feeder length (including services)	3.9 km		
Built	1970's		
Route	Morris, Hollis, Salter, Water, Bedford Row, Prince		
Installed MVA	17.5		
Interties with feeders	1H-419, 1H-415(o/h), 1H-427(o/h)		
Loops	N/A		
Stepdowns	610H Bedford Row		
Primary services	CS431-205, 345, 554, 002, 497, 498, 148, 580, 674, 165, 049, 261, 217, 220, 271, 401, 608, 450, 054		
Load profile for the last 3 years ending June 1, 2008.			
Underground Cable	Part of feeder	Conductor size [kcmil],[AWG]	$\begin{gathered} \text { Length, 3ph } \\ {[\mathrm{m}]} \end{gathered}$
	Main radial	750	2130
	Primary services	3/0	280
		350	270

### 2.2 LOAD CHECK SUMMARY

FEEDER PEAK LOAD HISTORY 2004-2008											
Halifax peninsular feeders of interest		2008*		2007		2006		2005		2004	
		PI	Load Check								
Underground 1H- 431		230	213	250	223	270	298	240	286	240	303
feeders	1H-419	220	-	250	196	260	230	260	240	290	258
	1H-403	220	203	240	222	260	273	270	227	270	250
	1H-405	220	210	250	220	270	275	270	283	255	230
	1H-424**	-	60	-	70	-	70	-	70	-	80
	1H-429	180	-	270	184	270	257	280	261	260	247
Overhead   Feeders   intertied with   u/g feeders	1H-415	360	-	375	283	340	326	390	320	350	240
	1H-427	230	230	260	238	260	267	260	220	250	220
	104H-413	250	253	250	330	280	330	250	360	340	350
	104H-431	350	350	260	243	270	271	280	250	340	330
u/g feeders	104H-432	280	343	275	365	280	288	350	351	160	271
	104H-422	230	206	300	253	275	277	275	280	230	267
	104-442	280	284	290	309	240	287	270	253	310	309
	2H-412	350	331	350	345	350	334	350	357	330	332
	2H-413	300	295	300	336	290	242	260	379	300	255
* - Period ending June 1, 2008   ** - Evaluated based on installed kVA											

### 3.0 FEEDER CONTINGENCIES

The purpose of this contingency categorization is to help identify feeders with switching limitations and to help draw the line between "Possible" and "Practical" as applied to a planned power outage to a part of the system. In other words even if the power can be restored after a system failure, the same technique may not always be justifiable for a planned outage.

### 3.1 CONTINGENCY DEFINITIONS

Contingency A - Transferring open point(s) in the loop of the same feeder. This is the preferred way of managing planned and unplanned outages.

Contingency B - Simple switching by transferring open point between two adjacent feeders of the same source (substation). Backup feeder loading is a possible limiting factor.

Contingency C - Transferring open point between two feeders from two independent substations. Limiting factors: feeder loading, substation capacity, temporary abnormal configuration of the backup feeder, possible issues with paralleling, more complicated switching procedures.

Contingency D - Cascade offloading. (a) Same as Contingency B or C but the backup feeder needs to be offloaded first to a third feeder. (b) Splitting load between two adjacent feeders.

### 3.2 CONTINGENCY OPTIONS

The following summaries are to give an overview of the available switching options. Contingency A options are only available for feeders with loops and only for the loop part of the feeder. This option is not shown in the summaries.

Contingency D options are only shown for the feeders with limited switching options B and C .

Not all of the D - options can be shown due to a high number of open/closed switch combinations.


2 of 6		
1H-405 CONTINGENCY OPTIONS		
Backup feeder	1H-403	1H-403 \& 1H-405
Total load [A]	490/440	
Switching device	L431-412	
Contingency type	B	
Comment	This option can be marginal during summer time	
Backup feeder	1H-424	1H-405 \& 1 H-424
Total load [A]	290/320	
Switching device	28H-447	
Contingency type	B	
Comment	Available.   $1 \mathrm{H}-424$ load is estimated to be 70 A .	
		,



1H-424 CONTINGENCY OPTIONS		
Backup feeder	1H-405	1H-405 \& 1 H-424
Total load [A]	290/320	
Switching device	28H-447	
Contingency type	B	200 五
Comment	$1 \mathrm{H}-424$ load is estimated to be 70 A .	


1H-429 CONTINGENCY OPTIONS		
Backup feeder	Split between 2H-412   and 104H-413	1H-429 is an express feeder to the   stepdown 10H-T1 North Bus of VG   Hospital. At full capacity the load is 260A.
Total load [A]	TBD as required	
Switching device	TBD as required	
Contingency type	D	
Comment	This backup option can   be marginal during   summer peaks.	


1H-431 CONTINGENCY OPTIONS		
Backup feeder	1H-419	1H-419 \& 1H-431
Total load [A]	510/440	
Switching device	L431-210 Art Gallery	600500400300
Contingency type	B	
Comment	Load check is recommended before	
	switching	
Backup feeder	1H-415	1H-431 \& 1H-415
Total load [A]		
Switching device	D431-184 Hollis/Morris	${ }_{600}^{700}$
Contingency type	B	500 400 300 200
Comment	The intertie switch is close to the substation. Very limited backup options for 1H-431	$\substack{2000 \\ 100 \\ 0 \\ 2005}$      2006 2007 2005
Backup feeder	1H-427	1 $1 \mathrm{H}-431$ \& 1H-427
Total load [A]		
Switching device	D431-266 Hollis/Morris	
Contingency type	B	
Comment	The intertie switch is close to the substation.	```ren```
	Very limited backup options for 1H-431	2005 2006 2007 2003

### 3.3 OBSERVATIONS

1H-403
There are several switching options but none of them are straightforward. All of the options can be marginal during summer peaks.

1H-405
Feeder 1H-424 is a reliable backup for $1 \mathrm{H}-405$.
1H-419
There are several options. During summer time the simple options become questionable. Splitting the load between $1 \mathrm{H}-431$ and $1 \mathrm{H}-403$ or $104 \mathrm{H}-422$ would be the next option.

## 1H-424

Feeder 1H-405 is a reliable backup for 1H-424. New feeder.
1H-429
Complicated switching to offload the $10 \mathrm{H}-\mathrm{T} 1$ transformer between $2 \mathrm{H}-412$ and $104 \mathrm{H}-$ 413. The load situation at 4 kV is expected to improve and therefore the above offloading should become more reliable. There is a suspicion of a collapsed ductbank on Morris St. The work to clarify on this issue is in progress (Summer 2008). This feeder is relatively new.

1H-431
The only simple backup option for this feeder is $1 \mathrm{H}-419$. This option becomes questionable during summer months. For improved switching flexibility this feeder may require additional intertie. See 4.1 for details. This may be especially important considering the overhead section of the feeder that is exposed at the intersection of Hollis and Morris St.

To summarize the above:

- Feeders 1H-405 and 1H-424 have reliable backup.
- Feeders 1H-403, 1H-419 and 1H-429 have conditional backup options. An effort should be made to improve it.
- Feeder 1H-431 has a questionable backup option. There is a risk of extended outage. Additional backup alternative(s) need to be developed.


### 4.0 SYSTEM IMPROVEMENTS

### 4.1 ART GALLERY TIE

To improve the backup options for feeders $1 \mathrm{H}-431$ and $1 \mathrm{H}-419$ a new tie connection is recommended between the Art Gallery vault and feeder 1H-424 in manhole \#13 on Lower Water Street. This will create a simple and reliable contingency option for the above two feeders which can also be used for a cable replacement/injection or cable treatment program.

The new feeder configuration will require extending nine 100 mm ducts (3-in, 3-out, 3spare) from MH56 to the Art Gallery vault. See Fig. 4.2 and Appendix 4 for more details. There are ducts available in the existing ductbank between MH13 and MH56 to install six 750 kcmil cables. The total length of the new cable extension is approximately 60 meters.


Fig. 4.1 New intertie between Art Gallery vault and MH13


Fig. 4.2 Ductbank Layout

### 4.2 SCOTIA SQUARE TIE

The main purpose of this proposal is to improve the backup options of the feeder $1 \mathrm{H}-403$. The idea is to use the existing 3-way Vista switch at the Scotia Square vault as a universal tie for $1 \mathrm{H}-403,1 \mathrm{H}-405$ and $1 \mathrm{H}-424$ feeders that will allow paralleling them in any combination. At the moment the switch is underutilized and is serving as a connection point between $1 \mathrm{H}-405$ and $1 \mathrm{H}-424$.


Fig. 4.7 New Connection in the Scotia Square vault


Fig. 4.8


Fig. 4.9
The switch $28 \mathrm{H}-449$ can be connected to one of the following devices that are on the same bus of the 28 H substation: $28 \mathrm{H}-410,28 \mathrm{H}-416,28 \mathrm{H}-414$ or $28 \mathrm{H}-445$ The exact point of connection needs to be determined.

### 4.3 OTHER SYSTEM IMPROVEMENT OPTIONS

### 4.3.1 Configuration Improvements of $1 \mathrm{H}-431$

Converting the $\mathrm{o} / \mathrm{h}$ portion of the feeder $1 \mathrm{H}-431$ would benefit the reliability of the Halifax underground system. There are six riser poles around the intersection of Hollis and Morris Streets that are exposed to traffic and weather. Also, there is a number of flying taps (two sets), quick sleeves, inline switches, communication loops and 4 kV lines sharing the same poles. The top circuits on each of the three poles on Fig. 4.10 are the feeder 1H-431.


Fig. 4.10 Intersection of Hollis and Morris St.
This project would mostly involve extending the ductbank on Hollis Street from manhole \#59 (Bushop/Hollis) to \#60 (Morris/Hollis) which are approximately 120 meters apart and a new manhole in the middle of the block with a submersible switch in it. The switch is required for two primary services: Waterford Apartments CS431-554 and Prince Matthew's Apartments CS431-480 and also to replace the functionality of the existing set of inline switches D431-394. Two or three overhead services would have to be converted as well.

This part of the feeder is situated within the boundaries of the existing pole-free area. This conversion would have to be supported by the HRM as a continued commitment of the current cost sharing agreement with NSPI. A new development in the area may help to trigger this process.

### 4.3.2 Cable Upgrades

There are two potential bottlenecks in the existing system that may be considered for an upgrade. The purpose is to increase the conductor size to the full size feeder ( 750 kcmil ) between the Metro Center and Scotia Square and between the riser pole on Cogswell St (feeder 104H-432) and Scotia Square.

See paragraphs 5.3.1 (B) and 5.3.1 (E) further in the text for details. With the existing ductbank configuration only one of the two can be implemented.

### 5.0 CABLE REPLACEMENT

5.1 Cable Lengths

Table 5.1

Total Feeder Section Lengths [m]							
Part of Feeder	Cable Size	1H Underground Feeders					
		403	405	419	424	429	431
Radial	750	1780	1440	3430	1600	2200	2130
	500	-	-	-	-	-	-
Loop	750	2240	160	-	-	-	-
	500	180	-	-	-	-	-
	350	1550	1380	-	-	-	-
	4/0	-	180	490	-	-	-
	3/0	-	-	640	-	-	-
	\#1	-	170	-	-	-	-
Tie	750	230	-	240	-	-	-
	500	-	180	-	-	-	-
Primary Service	350	100	-	-	-	-	-
	3/0	1260	130	100	350	-	270
	\#1	-	10	50	-	-	280
Total without/with services		$\begin{aligned} & 5980 / \\ & 7340 \end{aligned}$	$\begin{aligned} & \hline 3510 / \\ & 3650 \end{aligned}$	$\begin{aligned} & 4800 / \\ & 4950 \end{aligned}$	$\begin{aligned} & \hline 1600 / \\ & 1950 \end{aligned}$	2200	$\begin{aligned} & \hline 2130 / \\ & 2680 \end{aligned}$

Note:

1. The above numbers are 3 phase lines, not individual conductors
2. For detailed summary on feeder sections see Appendix A
3. For detailed summary on primary service cables see Appendix B

Summary:
The total length underground feeders including primary services ( 6 feeders): 22770 m Same for the feeders over 30 years old ( 4 feeders) - 18620 m This includes the feeder sections:
a) Radial -8780 m
b) Loops -6990 m
c) Ties - 650 m
d) Primary services -2200 m

### 5.2 Cable Accessories

The following cable accessories will be referenced to in tables 5.2, 5.3 and Appendix C:
S - Splice, general.
T-600 A deadbreak termination
LF - Life front termination
L-200 A loadbreak elbow
SA - Support arm, 14" multi-mount, Underground Devices Inc, MM14,
Table 5.2

Accessories per Feeder								
Cable   Accessory	$\mathrm{H}-403$		1H-405	H-419		$1 \mathrm{H}-431$		
	Feeder	Service	Feeder	Service	Feeder	Service	Feeder	Service
S	9	-	9	-	9	-	2	-
T	31	27	24	9	20	13	21	14
LF	31	7	36	-	15	4	2	4
L	0	33	-	9	-	11	-	14
SA* 2	60	-	34	-	60	-	26	-

*     - the number of support arms is estimated based on the approximate number of passes through manholes for feeder cables only.

Table 5.3

Total Accessories		
Cable Accessory	Feeder	Service
S	25	-
T	96	67
LF	84	15
L	0	67
SA	180	-
Total	385	149

Note that the accessories are shown here as three phase devices, therefore for the actual number of single phase units needs to be tripled.
5.3 Feeder Sections


Fig. 5.3 Feeder Sections for Replacement

### 5.3.1 FEEDER 1H-403 (A, B, C, D, E)

(A) 1H-403 - Main Radial from 1H to 28H-416

The replacement of this part of the feeder can be approached in two ways:

## Option 1

Use an alternative supply for 1H-403 (See 3.2 Contingency Options). Deenergize the radial part of the feeder between 1 H and $28 \mathrm{H}-416$ (approx. 1.4 km ) and replace it.

## Option 2

Remove the old 4 kV cables $1 \mathrm{H}-243,1 \mathrm{H}-246$ and $1 \mathrm{H}-247$ (\#500, 3 phase PILC) along the Lower Water, Sackville and Granville Streets between 1H and MH46 (1 km). Install new cables in the freed-up ducts while the existing feeder cables are still in service. Then extend the new cables from MH46 to MH47 and further to MH125 and MH26. This is approximately $90 \%$ of the radial section of the feeder. The remaining short run from MH26 - MH28 - MH32 to 28H does not have enough free ducts. Therefore, one of the alternative supplies will be used for the duration of the cable replacement.

Advantages of this option: a) minimizes the use of alternative supply b) one kilometer of ducts becomes available for cascade replacement of two more feeders c) old equipment is removed and salvaged.

This cable may contain PCB. Federal and provincial legislation and regulations regulate the management of PCBs. Refer to the Environmental Management Strategy for OilFilled Equipment ENV-2.05 (Environmental Binder) for proper procedures.

## (B) 1H-403 - North Loop from 28H-410 to L431-229 Metro Center

There are three sizes of conductors in the loop: 350,500 and 750 kcmil . It may be beneficial to upgrade a part of the loop between MH102 on Cogswell St and 28H to 750 kcmil to create a full size tie between feeder $104 \mathrm{H}-422$ (SW\# D4A15363) and 28H-410 in Scotia Square. There are two conditions for this upgrade:

1) Some cables would have to be swapped in MH43 to make this tie "service free". This will transfer the cs431-265 service to another shoulder of the same loop that has multiple primary services and will remain 350 kcmil .
2) There are only two free ducts available between 28 H and MH32. The upgrade is still possible but this option needs to be further investigated.
(C) 1H-403 -Metro Center Loop from L431-230 to L431-232

This part of the feeder has enough spare ducts to pre-install the new switch-to-switch sections while the old cable remains in service. The switching between the old and new cable can be done without taking outages to the customers.
(D) 1H-403 - 28H-415 to Grand Parade Vault

This is a normal feed for the Metro Center loop. There are not enough spare ducts to install the replacement cable ahead of time. One of the two available backup options has to be used for the duration of the cable replacement or injection.
(E) 1H-403 - 28H-411 to L431-230 Metro Center - Tie with $\mathbf{1 H} \mathbf{H 0 5}$

There are two sizes of conductors ( 500 and 750 kcmil ) used in this tie. The 500 kcmil section should be upgraded to the standard 750 kcmil size. There are only two free ducts available between 28 H and MH32 to exit the Scotia Square vault. The cable upgrade is possible but this option needs to be further investigated.

With the existing ductbank configuration, the two cable upgrades (B) and (E) are mutually exclusive therefore:
a) Only one of the two may be selected
b) Possibility of adding more ducts between 28 H vault and MH32 to be explored

### 5.3.2 FEEDER 1H-405 (F, G)

(F) 1H-405 - Main Radial from $\mathbf{1 H}$ to $\mathbf{2 8 H} \mathbf{- 4 1 7}$

This part of the feeder is very similar to $1 \mathrm{H}-403$ (A) and can be approached in the same way. See section (A) options for details. The removal of the old 4 kV feeder cables will also benefit the $1 \mathrm{H}-405$ feeder replacement.
(G) 1H-405-23 kV Loop

The old multi-loop configuration was recently changed. The exact configuration of the present system may need to be updated on the single line diagrams. The upcoming cable replacement may also be used as an opportunity to further optimize the existing 23 kV loop system.

### 5.3.3 FEEDER 1H-419 (H, I, J)

(H) 1H-419 - to L431-401 Proctor Street

The replacement of this section can be combined with the removal of the old 4 kV cables (See 5.1 Option 2). This section can be backfeed from 104H-422 or 104H-442.
(I) 1H-419 - L431-404 Proctor Street to L431-211 Art Gallery Vault The layouts of manholes MH90, MH91 and MH92 need to be verified and completed.
(J) 1H-419 Loop from L431-211 to L431-209 Art Gallery Vault

This is a normal underground loop. There is no foreseeable reason for cable size upgrades or configuration change.
(K) 1H-419 MH22 to 28H-413

This is a normally open tie with the feeder $1 \mathrm{H}-403$. There are no primary services on this feeder section. The replacement should be straightforward.

### 5.3.4 FEEDER 1H-431 (L)

## (L) 1H-431 to Art Gallery Vault

The records on the available spare ducts are inconsistent. A detailed scoping is required. The system improvement option 4.1 is recommended for better contingency arrangements.

### 5.4 Budgeting for Cable Replacement

### 5.4.1 Estimates and Assumptions

## Labour:

- One underground crew includes 3 technicians.
- A basic length of 3 phase cable would normally consist of 1,2 or 3 runs between two electrically adjacent cable accessories. The cable runs can be: manhole-to-manhole, manhole-to-vault, vault-to-vault and in some cases riser pole to manhole.
- One crew can install in one normal day:
a) one basic length of three 750 kcmil cables, no terminations.
b) 2 basic lengths of triplexed cable, no terminations.
c) 1 basic length of triplexed cable and terminate one end.
d) 6 cable terminations
e) one primary service loop (one basic length), terminate both ends reconnect.
- One crew can remove in one normal day:
a) three old PILC cables from three manhole-to-manhole lengths. Four manholes to be entered. This is mostly applicable to the three old feeders between 1H and MH46.
b) switch from old to new pre-installed and pre-terminated length of cable, remove the old cable. Phase the cable.
- For simplicity the above installation steps can be further combined into mandays per basic length of cable (installation + termination + switching + removal):
a) 750 kcmil three 1 phase cables:
b) $<750$ kcmil 3 phase cable installation:
- One eight hour manday (2010) with overhead is calculated as follows:
- One eight hour overtime manday is calculated:
- Unless specified, no overtime rates have been used for calculations.


## Materials:

- Primary cable: $\quad 750 \mathrm{kcmil} \mathrm{Al}, 28 \mathrm{kV} \quad-\$ 25 / \mathrm{m}$
350 kcmil Al, $28 \mathrm{kV}, 3$ phase - $\$ 40 / \mathrm{m}$
$3 / 0 \mathrm{Al}, 28 \mathrm{kV}, 3$ phase $\quad-\$ 35 / \mathrm{m}$
\#1 Al, $28 \mathrm{kV}, 3$ phase $\quad-\$ 30 / \mathrm{m}$
750/750 - \$200 each
- Splice
- Loadbreak elbow 200 A - $\$ 55$ each
- Synthetic terminator - $\$ 170$ each
- Support arm 14" complete with masonry fasteners and tie wraps for cable - $\$ 50$ each
5.4.2 Feeder Replacement Estimates

Table 5.4

Materials and Labour for Cable Replacement Option Excluding Primary Services			
Feeder	Cable (refer to feeder profiles 2.2)	Accessories (refer to 5.2)	Labour (refer to 5.4.1)
1H-403	$\begin{aligned} & 750 \text { kcmil: } 4250 \times 1.1 * \times 25 \times 3 \\ & =\$ 325,625 \\ & 350 \text { kcmil: } 1550 \times 1.1 \times 40= \\ & \$ 68,200 \\ & \text { Other sizes: } 360 \times 1.1 \times 35= \\ & \$ 13,860 \\ & \text { Total: } \$ 407,685 \end{aligned}$	$\begin{aligned} & \text { S: } 9 \times 6^{* *} \times 239= \\ & \$ 12,906 \\ & \text { T: } 31 \times 3 \times 239= \\ & \$ 22,227 \\ & \text { LF: } 31 \times 3 \times 170= \\ & \$ 15,810 \\ & \text { SA: } 60 \times 50=\$ 3,000 \\ & \text { Total: } \$ \mathbf{5 3 , 9 4 3} \end{aligned}$	$750 \text { kcmil: }$
1H-405	$\begin{aligned} & \hline 750 \text { kcmil: } 1630 \times 1.1 \times 25 \times 3= \\ & \$ 134,475 \\ & 350 \text { kcmil: } 1380 \times 1.1 \times 40= \\ & \$ 60,720 \\ & \text { Other sizes: } 520 \times 1.1 \times 35= \\ & \$ 20,020 \\ & \text { Total: } \$ 215,215 \end{aligned}$	$\begin{aligned} & \text { S: } 9 \times 6 \times 239= \\ & \$ 12,906 \\ & \text { T: } 24 \times 3 \times 239= \\ & \$ 17,208 \\ & \text { LF: } 36 \times 3 \times 170= \\ & \$ 18,360 \\ & \text { SA: } 34 \times 50=\$ 1,700 \\ & \text { Total: } \$ \mathbf{5 0 , 1 7 4} \end{aligned}$	$\begin{aligned} & 750 \text { kcmil: } \\ & 7 \text { runs }= \\ & <750 \text { kcmil: } \\ & 6 \text { runs }= \end{aligned}$
1H-419	$\begin{aligned} & 750 \text { kcmil: } 3430 \times 1.1 \times 25 \times 3= \\ & \$ 302,775 \\ & \text { Other sizes: } 1130 \times 1.1 \times 35= \\ & \$ 43,505 \\ & \\ & \text { Total: } \$ \mathbf{3 4 6 , 2 8 0} \end{aligned}$	S: $9 \times 6 \times 239=$   \$12,906   T: $20 \times 3 \times 239=$   \$14,340   LF: $15 \times 3 \times 170=$   \$7,650   SA: $60 \times 50=\$ 3,000$   Total: \$37,896	750 kcmil:   17 runs =   $<750$ kcmil:   8 runs $=$
1H-431	750 kcmil: $2130 \times 1.1 \times 25 \times 3=$ \$175,725   Total : \$175,725	S: $2 \times 6 \times 239=$ \$2,868   T: $21 \times 3 \times 239=$ \$15,057   LF: $2 \times 3 \times 170=$ \$1,020   SA: $26 \times 50=\$ 1,300$   Total: \$20,245	750 kcmil cable:   14 runs $=$

* $\quad-10 \%$ of length is added for splicing loops and waste.
** - 600 A deadbreak elbows are used for splicing cables.
*** - In this context: 3 phase cable size between \#1 and 350 kcmil
Total:

Note that the system improvement items (4.0), old 4 kV cable removals (5.3.1 A) and proposed conductor upgrades for $1 \mathrm{H}-403(5.3 .1 \mathrm{~B}, \mathrm{E})$ are not included in the above estimate.
5.4.3 Service Replacement Estimates

Table 5.5

Materials and Labour for Replacing Primary Service Cables			
Feeder	Cable (refer to feeder profiles 2.2)	Accessories (refer to 5.2)	Labour (refer to 5.4.1)
1H-403	750 kcmil: $100 \times 1.1^{*} \times 25 \times 3=$ \$8,250   350 kcmil: $100 \times 1.1 \times 40=\$ 4,400$   Other sizes: $1680 \times 1.1 \times 35=$ \$64,680   Total: 72,930	$\begin{aligned} & \text { T: } 27 \times 3 \times 239= \\ & \$ 19,359 \\ & \text { LF: } 7 \times 3 \times 170= \\ & \$ 3,570 \\ & \text { L: } 33 \times 3 \times 55= \\ & \$ 5,445 \end{aligned}$   Total: \$28,374	32 services $=$
1H-405	3/0: $170 \times 1.1 \times 35=\mathbf{6 , 5 4 5}$	$\begin{aligned} & \text { T: } 9 \times 3 \times 239= \\ & \$ 6,453 \\ & \text { L: } 9 \times 3 \times 55= \\ & \$ 1,485 \\ & \text { Total: } \$ 7,938 \end{aligned}$	8 services $=$
1H-419	750 kcmil: $30 \times 1.1 \times 25 \times 3=$ \$2,475   $3 / 0 \& \# 1: 140 \times 1.1 \times 35=\$ 5,390$   Total: \$7,865	$\begin{aligned} & \text { T: } 13 \times 3 \times 239= \\ & \$ 9,321 \\ & \text { LF: } 4 \times 3 \times 170= \\ & \$ 2,040 \\ & \text { L: } 11 \times 3 \times 55= \\ & \$ 1,815 \\ & \text { Total } \mathbf{\$ 1 3 , 1 7 6} \\ & \hline \end{aligned}$	$15 \text { services }=$
1H-431	350 kcmil: $270 \times 1.1 \times 40=\$ 11,880$   3/0 \& \#1: $480 \times 1.1 \times 35=\$ 18,480$   Total: \$30,360	$\begin{aligned} & \text { T: } 14 \times 3 \times 239= \\ & \$ 10,038 \\ & \text { LF: } 4 \times 3 \times 170= \\ & \$ 2,040 \\ & \text { L: } 14 \times 3 \times 55= \\ & \$ 2,310 \\ & \text { Total: } \$ \mathbf{1 4 , 3 8 8} \end{aligned}$	19 services $=$

$-10 \%$ of length is added for splicing loops and waste.

Table 5.6

Materials and Labour for Replacing Primary Service Cables 50\% Overtime			
Feeder	Cable (refer to feeder profiles 2.2)	Accessories (refer to 5.2)	Labour (refer to 5.4.1)
1H-403	750 kcmil: $100 \times 1.1^{*} \times 25 \times 3=$ \$8,250   350 kcmil: $100 \times 1.1 \times 40=\$ 4,400$   Other sizes: $1680 \times 1.1 \times 35=$ \$64,680   Total: 72,930	$\begin{aligned} & \text { T: } 27 \times 3 \times 239= \\ & \$ 19,359 \\ & \text { LF: } 7 \times 3 \times 170= \\ & \$ 3,570 \\ & \text { L: } 33 \times 3 \times 55= \\ & \$ 5,445 \\ & \\ & \text { Total: } \$ \mathbf{2 8 , 3 7 4} \\ & \hline \end{aligned}$	32 services $=$
1H-405	3/0: $170 \times 1.1 \times 35=\$ 6,545$	$\begin{aligned} & \text { T: } 9 \times 3 \times 239= \\ & \$ 6,453 \\ & \text { L: } 9 \times 3 \times 55= \\ & \$ 1,485 \\ & \text { Total: } \$ 7,938 \\ & \hline \end{aligned}$	8 services $=$
1H-419	750 kcmil: $30 \times 1.1 \times 25 \times 3=$ \$2,475   $3 / 0 \& \# 1: 140 \times 1.1 \times 35=\$ 5,390$   Total: \$7,865	$\begin{aligned} & \text { T: } 13 \times 3 \times 239= \\ & \$ 9,321 \\ & \text { LF: } 4 \times 3 \times 170= \\ & \$ 2,040 \\ & \text { L: } 11 \times 3 \times 55= \\ & \$ 1,815 \\ & \text { Total: } \$ \mathbf{1 3 , 1 7 6} \\ & \hline \end{aligned}$	15 services $=$
1H-431	$\begin{aligned} & 350 \text { kcmil: } 270 \times 1.1 \times 40=\$ 11,880 \\ & 3 / 0 \& \# 1: 480 \times 1.1 \times 35=\$ 18,480 \end{aligned}$   Total: \$30,360	$\begin{aligned} & \text { T: } 14 \times 3 \times 239= \\ & \$ 10,038 \\ & \text { LF: } 4 \times 3 \times 170= \\ & \$ 2,040 \\ & \text { L: } 14 \times 3 \times 55= \\ & \$ 2,310 \\ & \text { Total: } \$ \mathbf{1 4 , 3 8 8} \\ & \hline \end{aligned}$	19 services =

5.5 Salvage

## Aluminum

Table 5.7

Theoretical Weight of Aluminum Wire			
Wire size	Diameter $[\mathrm{mm}]$	Cross-section [mm2]	Weight $[\mathrm{kg} / \mathrm{km}]$
750	22	380	1026
500	18	253	683
350	15	177	478
$4 / 0$	11.7	107	289
$3 / 0$	10.4	85	230
$\# 1$	7.4	42	113

Table 5.8

Aluminum Salvage Weight by Feeder [kg]						
Feeder	Cable Size	$1 \mathrm{H}-403$	$1 \mathrm{H}-405$	$1 \mathrm{H}-419$	$1 \mathrm{H}-431$	
	750	13,080	4,926	11,295	6,555	
	500	369	369	-	-	
	350	2,223	1,977	-	-	
	$4 / 0$	-	156	426	-	
	$3 / 0$	-	-	441	-	
	$\# 1$	-	57	-	-	

Note: concentric neutral material is not accounted for
Salvage value of aluminum: $\$ 1.5 / \mathrm{kg}$ :
a) Feeder cables $750 \mathrm{kcmil}=\$ 54,000$
b) Feeder cables $<750 \mathrm{kcmil}=\$ 9,000$
c) Services, all sizes $\quad=\$ 2,200$

## Copper

The salvage value of copper: $\$ 5.00 / \mathrm{kg}$. The removal of 3 km of 3 ph 500 kcmil PILC cable (5.3.1 Option 2) should produce 10 tons of salvageable copper, which is approximately $\$ 50,000$.

The total salvage value of the cables proposed for removal under this project is expected to be $\$ 110,000$.

### 6.0 CABLE INJECTION

### 6.1 Description

The cable injection option will be calculated for 750 kcmil cable only. The smaller conductor sizes for both feeder and services are considered for replacement. See Table 6.1 for summaries.

Table 6.1

Three phase line to be injected/replaced [m]			
	Feeder Injection   750 kcmil	Feeder Replacement   $<750$ kcmil	Service Cable   Replacement
$1 \mathrm{H}-403$	4,250	1,730	1,360
1H-405	1,680	1,910	140
1H-419	3,650	1,130	150
1H-431	2,130	0	550
Total	$\mathbf{1 1 , 7 1 0}$	$\mathbf{4 , 7 7 0}$	$\mathbf{2 , 2 0 0}$

For feeder cables the injection will have to be done with de-energized cables. The injection and material installation crew would normally include 3 technicians. Time to inject will be dependent on the characteristics of the cable and type of conductors. The first draft work schedule implies up to 10 hours/day and 7 days/week. Labour fees for cable testing (TDR and pressure test) and cable injection are included in the injection price. The actual cable length is to be confirmed with TDR. Once injected the cables are protected by a 20 year warranty.

### 6.2 Scope

Following is a planned scope of injection work grouped by feeder\# and section\# (see Fig. 5.3). The sections will be (a) terminated at switching devices using livefront or deadfront terminations and (b) spliced using 600A deadbreak T-body, therefore each section will require 6 terminations. All terminations are in manholes and vaults. Some of the basic section lengths below are assumed to be equal for simplicity, but the total lengths should be fairly accurate.

Feeder 1H-403 (4250 m)
Section A: $230+230+230+230+230+230=1400 \mathrm{~m}$
Section B: $160+150+230=540 \mathrm{~m}$
Section C: $210+220+160+220+140+80+280+120+120+150=1700 \mathrm{~m}$
Section D: $190+190=380 \mathrm{~m}$
Section E: 230 m
Three phase cable sections: $\mathbf{2 2}$
Terminations: $22 \times 6=\mathbf{1 3 2}$
Feeder 1H-405 (1680 m)
Section F: $230+230+230+230+230+270=1440$
Section G: 240

Three phase cable sections: 7
Terminations: $\mathbf{4 2}$
Feeder 1H-419 (3670 m)
Section H: $228+228+228+228+228+200+200+200+200+200=1140 \mathrm{~m}$
Section I: $156+156+156+110+190+240+190=1290 \mathrm{~m}$
Section K: 240 m
Three phase cable sections: $\mathbf{1 8}$
Terminations: 108
Feeder 1H-431 (2130 m)
Section L: $190+190+150+90+100+160+170+170+190+110+100+180+160+160=2130 \mathrm{~m}$ Three phase cable sections: $\mathbf{1 4}$
Terminations: $\mathbf{8 4}$
Summary:
Three phase cable sections: 61 ( 1831 ph 750 kcmil cables)
Total 3 ph. length: $\mathbf{1 1 , 7 1 0} \mathbf{~ m}$
Terminations: $\mathbf{3 6 6}$ ( 306 T-bodies +60 misc. live front terminations)
6.3 Cable Replacement Part of the Cable Injection Option

The cables other than 750 kcmil will be replaced as follows
Table 6.2

Materials and Labour for Cable Replacement   Excluding 750 kcmil Feeder Cables and Primary Services			
Feeder	Cable (refer to feeder profiles 2.2)	Accessories (refer to 5.2)	Labour (refer to 5.4.1)
1H-403	350 kcmil: $1550 \times 1.1 *$ x $40=$ \$68,200   Other sizes: $360 \times 1.1 \times 35=$ \$13,860   Total: \$82,060	T: $13 \times 3 \times 239=$   \$9,321   LF: $23 \times 3 \times 170=$   \$11,730   SA: $60 \times 50=\$ 3,000$   Total: \$24,051	$\begin{aligned} & <750 \text { kcmil**: } \\ & 13 \text { runs }= \end{aligned}$
1H-405	350 kcmil: $1380 \times 1.1 \times 40=$ \$60,720   Other sizes: $520 \times 1.1 \times 35=$ \$20,020   Total: \$80,740	$\begin{aligned} & \text { T: } 32 \times 3 \times 239= \\ & \$ 22,944 \\ & \text { LF: } 32 \times 3 \times 170= \\ & \$ 16,320 \\ & \text { SA: } 34 \times 50=\$ 1,700 \\ & \\ & \text { Total: } \$ 40,964 \end{aligned}$	$<750$ kemil: $6 \text { runs }=$
1H-419	Other than 750 kcmil sizes: $1130 \times 1.1 \times 35=\$ 43,505$	T: $7 \times 3 \times 239=\$ 5,019$   LF: $10 \times 3 \times 170=$   \$5,100   SA: $60 \times 50=\$ 3,000$   Total: \$13,119	$\begin{aligned} & <750 \text { kcmil: } \\ & 8 \text { runs }= \end{aligned}$
1H-431	N/A	N/A	N/A

* $\quad-10 \%$ of length is added for splicing loops and waste.
** - In this context: 3 phase cable size from \#1 to 350 kcmil
$\square$
The Total price with $24.46 \%$ of contractor's overhead:
One of the NSPI underground crews will be involved with the contractor for the duration of the project which is estimated to be 8 weeks.

7.0 Cable Replacement vs. Cable Injection

Table 7.1

Replacement of 750 kcmil Cable Only			
Feeder	Cable (Table 5.4)	Accessoties	Labour
1H-403	\$325,625	Splices:19x1,432=\$27,208   Brackets:19x50=\$950   Total: $\mathbf{\$ 2 8 , 1 5 8}$	
1H-405	\$130,475	Splices: $7 \times 1,432=\$ 10,024$   Brackets: $7 \times 50=\$ 350$   Total: \$10,374	
1H-419	\$302,775	Splices: $17 \times 1,432=\$ 24,344$   Brackets: $17 \times 50=\$ 850$   Total: \$25,194	
1H-431	\$175,725	Splices: $14 \times 1,432=\$ 20,048$   Brackets: $14 \times 50=\$ 700$   Total: \$20,748	
	\$934,600	\$84,474	\$325,242

Table 7.2

| Cable Replacement vs. Cable Injection Budget Summaries |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 750 kcmil only |  |  |  |  |  |

* -3 technicians, $\square$ regular time

Calculating net present values for projects with different life spans can lead to incorrect decisions unless adjustments are made. One of the accepted techniques for dealing with this problem is the Replacement Chain Method which transforms the decision variable (NPV) into a common metric for projects of different life spans. NPV in itself does not accomplish this.

Table 7.3

Cable Replacement vs. Cable Injection - Compare the Options of Different Life			
$\mathbf{7 5 0} \mathbf{k c m i l}$ only			

* Method: Determine the lowest common denominator of all the "project lives".

Calculate the Net Present Value for the project repeated " n " times. Compare the projects; choose that project with highest NPV or less negative in our case.


Risks associated with cable injection:
a. A variety of first generation polyethylene insulation cable will remain in service.
b. After removing of the old terminations and splices some of the cables may be too short for a quality splice.
c. Some of the cable sections may not be injectable due to physical (loss of pressure) or electrical parameters and therefore will have to be replaced.
d. Need to trace another parameter of the injected cable section and having to manage the cable injection records for warranty purposes.
e. The cable injection warranty will only cover the cost of injection for the affected section. The cost of associated NSPI labour and cost of restoration will not be covered. f. Introduction of non-standard hardware to the system. All of the new terminations have features for cable injection (e.g. reticular flash preventer) g. Working with contractor will require additional coordination effort. h. Unforeseeable cost plus items

The cost of cable injection per basic length of three phase section (typ. Switch-to-switch) today is:
$\$ 823,314 / 57$ (Table 7.2) $=\$ 14,444$
When one of the three cables of the injected section fails in 20 years, NSPI will be reimbursed with:
$\$ 570,000 /(57 x 3)=\$ 3,333$
The present value of the future warranty payment is:
$\mathrm{PV}=3,333(\mathrm{P} / \mathrm{F}, 8 \%, 20)=\$ 715$

### 8.0 BUDGETARY TIMELINES

Year 1, 2 and 3 - replace radial sections of the feeders $1 \mathrm{H}-403,405,419$ and 431
Year 4 and 5 - replace loops and ties of the feeders $1 \mathrm{H}-403,405$ and 419
2010: a) 1H-403 - radial section between 1 H and $28 \mathrm{H}-416$ Scotia Square $(1,400 \mathrm{~m})$
b) $1 \mathrm{H}-405$ - radial section between 1 H and $28 \mathrm{H}-417$ Scotia Square $(1,440 \mathrm{~m})$
c) PILC cable removal between 1H and MH46 on Granville St (1,000m)

2011: a) 1H-419 - radial section between 1H and L431-401 Proctor Street ( $2,140 \mathrm{~m}$ )
b) 1H-419 - half of the radial section between L431-404 and L431-211 Art Gallery Vault (645m)
2012: a) $1 \mathrm{H}-431$ - radial section between 1H and Art Gallery Vault ( $2,230 \mathrm{~m}$ )
b) 1H-419 - second half of the radial section between L431-404 and L431-211 Art Gallery Vault (645m)
2013: a) 1H-403 - North Loop from 28H-410 to L431-229 Metro Center (2,240m)
b) 1H-403 - Metro Center Loop from L431-230 to L431-232 (1,700m)

2014: a) $1 \mathrm{H}-403$ - Scotia Square $28 \mathrm{H}-415$ to Grand Parade Vault (380m)
b) 1H-403 - Scotia Square 28H-411 to Metro Center L431-230 (410m)
c) $1 \mathrm{H}-405-23 \mathrm{kV}$ loop $(1,900 \mathrm{~m})$
d) $1 \mathrm{H}-419$ - Tie to Scotia Square (240m)

Budgetary Item for 2010
The underground work units and cost of materials are described in Section 5.4.1 of the Report. The RT labour is calculated as

1. Cable NSPI\# 6548-0400

$$
(1400+1440) \times 1.1 \times \$ 25 \times 3=\$ \mathbf{2 3 4}, \mathbf{3 0 0}
$$

2. Accessories

Separable cable connectors as per Appendix E: $28 \times \$ 1,432=\mathbf{\$ 4 0 , 0 9 5}$
Support arms $-28 \times \$ 50=\mathbf{\$ 1 , 4 0 0}$
3. Labour

Cable installation (28 basic runs) $28 \times 9=\square: \$ 161,532$
PILC cable removal
4. Contracting

Traffic control - $\quad$ /day: $28 \times 500 \times 1.2442=\mathbf{\$ 1 7 , 4 1 9}$
5. Salvage
$3 \times 3 \times 1 \mathrm{~km}$ of copper PILC 500 kcmil cable $=10,000 \mathrm{~kg}$ of salvageable copper
Assume salvage value is $\$ 5.00 / \mathrm{kg}$, the total value is $\mathbf{\$ 5 0 , 0 0 0}$
$3 \times 2.84 \mathrm{~km}$ of 750 kcmil al cable $=8,740 \mathrm{~kg}$ of salvageable aluminum
Assume the salvage value is $\$ 1.5 / \mathrm{kg}$ the total value is $\mathbf{\$ 1 3 , 0 0 0}$
Total: \$401,419

APPENDIX A - Cable Lengths and Available Ducts

(A) 1H-403 - Main Radial 1H to 28H-416-1400 m of 750 kcmil		
From	To	Available Ducts
1H Substation	MH2	9A (A- available),   Remove: 243, 246, 247
MH2	MH4	$1 \mathrm{~A}^{*}$   Removals: 243, 246, 247
MH4	MH5	
MH5	MH6	
MH6	MH9	
MH9	MH10	$2 \mathrm{~A}^{*}$   Removals: 243, 246, 247
MH10	MH48	
MH48	MH46	
MH46	MH26	0A, 1 cemented over,
MH26	MH28	0A
MH28	MH32	3A
MH32	28H-416 Scotia Square	2A*

(B) 1H-403 - North Loop from 28H-410 to L431-229 Metro Center

From	To	Cable	Available Ducts
28H-410	MH32	500, 180 m	2A
MH32	MH39		5A
MH39	MH41	350, 530 m	4A*
MH41	MH42		4A*
MH42	MH43		5A
MH43	MH126		2A
	MH102	350, 400 m	3A*
MH102	MH103		0A
MH103	Police Station Vault		0A
Police Station Vault	Citadel Inn Vault	350, 70 m	0A
Citadel Inn Vault	MH103	350, 550 m	0A
MH103	MH102		0A
MH102	MH43		$3 A^{*}$
MH43	MH42		5A
MH42	MH41		4A*
MH41	MH39		4A*
MH39	MH38	750, 160 m	3A*
MH38	MH40		5A
MH40	MH38	750, 150 m	5A
MH38	MH116		5A
MH116	MH38	750, 230 m	5A
MH38	MH37		9A
MH37	MH36		9A
MH36	L431-229 MetroCtr		8A


(C) 1H-403-Metro Center Loop from L431-230 to L431-232			
From	To	Cable	Available Ducts
Metro Venter Vault	MH36	750, 210 m	11A
MH36	MH110		4A
MH110	MH114		
MH114	Prince George Vault		
Prince George Vault	MH114	750, 220 m	
MH114	MH124		
MH124	Cambridge Vault		
Cambridge Vault	MH124	750, 160 m	
MH124	MH87		
MH87	MH131		
MH131	MH132	750, 220 m	
MH132	MH117	$750,140 \mathrm{~m}$	
MH117	MH115	$750,80 \mathrm{~m}$	
MH115	MH109	750, 280 m	
MH109	Grand Parade Vault		
Grand Parade Vault	MH33	750, 120 m	
MH33	MH34		
MH34	MH35	750, 120 m	
MH35	MH123		
MH123	MH35	750, 150 m	
MH35	MH36		
MH36	L431-232 Metro Ctr		

(D) 1H-403 - 28H-415 to Grand Parade Vault

From	To	Cable	Available Ducts
$28 H-415$	MH30	750, 190 m	2A
MH30	MH31		AA
MH31	L431-187   Barrington Place		0A
L431-186	MH31	750,190 m	0A
MH31	MH30		2A
MH30	MH33		12A
MH33	L431-227 Grand   Parade Vault		9 A

(E) 1H-403 - 28H-411 to L431-230 Metro Center - Tie with 1H-405

From	To	Cable	Available Ducts
28H-411	MH32	$500,180 \mathrm{~m}$	A2, Upgrade?
MH32	MH39		A5, Upgrade?
MH39	MH38	750,230 m	A3*
MH38	MH37		A9
MH37	MH36		A9


| MH36 | L431-230 <br> Metro Center | A11 |
| :--- | :--- | :--- | :--- |

(F) 1H-405 - Main Radial 1H to 28H-417

From	To	Cable	Available Ducts
1H-405	MH2	750, 1050 m	9A
MH2	MH4		1A
MH4	MH5		1A
MH5	NH6		1A
MH6	MH9		1A
MH9	MH10		2A
MH10	MH48		2A
MH48	MH46		2A
MH46	MH47		3A
MH47	MH133		13A
MH133	MH47	750, 390 m	13A
MH47	MH46		3A
MH46	MH26		0A
MH26	MH28		1A
MH28	MH32		3A
MH32	28H-417		2A, may be used for 1H-403 upgrades


(G) 1H-405-23 kV Loop			
From	To	Cable	Available Ducts
28H-408	MH32	350, 390 m	2A
MH32	MH39		5A
MH39	MH41		4A
28H-409	MH32	350, 390 m	2A
MH32	MH39		5A
MH39	MH41		4A
28H-408	28H-424 Center Pad	$350,110 \mathrm{~m}$	
28H-409	28H-423 Center Pad	$350,110 \mathrm{~m}$	
MH41	28H-419   Scotia Tower	350, 20 m	
MH41	28H-418   Scotia Tower	350, 20 m	
MH41	MH42	350, 120 m	4A
MH41	MH42	$350,120 \mathrm{~m}$	4A
MH42	28H-427 North Pad	4/0, 90 m	1A
MH42	28H-428 North Pad	4/0, 90 m	1A
MH42	$\begin{aligned} & 28 \mathrm{H}-433 \\ & \text { MacKeen Tower } \end{aligned}$	350, 50 m	0A
MH42	$\begin{array}{\|l\|} \hline 28 \mathrm{H}-432 \\ \text { MacKeen Tower } \end{array}$	350, 50 m	0A


$28 \mathrm{H}-433$	MH43	170 m	
MH43	$28 \mathrm{H}-442$		
28H-432	MH43	\#1,170 m	
MH43	$28 \mathrm{H}-441$		


(H) 1H-419 - to L431-401 Proctor Street			
From	To	Cable	Available Ducts
1H-405	MH2	750, 1140 m	9A
MH2	MH4		1A
MH4	MH5		1A
MH5	MH6		1A
MH6	MH9		1A
MH9	MH10		2A
MH10	MH48		2A
MH48	MH46		2A
MH46	MH47		3A
MH47	MH125		3A
MH125	MH26	750, 1000 m	1A
MH26	MH28		1A
MH28	MH32		3A
MH32	28H		2A*
28H	MH30		2A
MH30	MH23		6A
MH23	MH22		7A
MH22	MH21		9A
MH21	MH90		0A
MH90	MH91		0A
MH91	MH92		
MH92	6H-401 Proctor St		

(I) 1H-419 - L431-404 Proctor Street to L431-211 Art Gallery Vault

From	To	Cable	Available Ducts
L431-404	MH92	750, 560 m	
MH92	MH91		
MH91	MH90		0A
MH90	MH21		0A
MH21	MH20		5A
MH20	MH19		7A
MH19	L431-257   Xerox Building		4A
L431-256	MH19	750, 110 m	4A
MH19	L431-259   Sheraton Vault		5A
L431-258   Sheraton Vault	MH19	750, 190 m	5A


MH19	MH18		15A
MH18	MH22		9A
MH22	MH18	750, 240 m	9A
MH18	MH16		14A
MH16	MH14		14A
MH14	1801 Hollis St		4A
1801 Hollis St	MH14	750, 190 m	4A
MH14	MH13		14A
MJH13	MH56		12A
MH56	L431-211 Art Gallery Vault		0A


(J) 1H-419 Loop from L431-211 to L431-209 Art Gallery Vault			
From	To	Cable	Available Ducts
L431-211 Art Gallery Vault	MH56	3/0, 140 m	0A
MH56	MH55		13A
NH55	MH25		1A
MH25	L431-236 Royal Bank Vault		4A
L431-237 Royal Bank Vault	MH25	3/0, 210 m	4A
MH25	MH24		4A
MH24	MH15		
MH15	MH17		2A
MH17	L431-238 Historic Properties Vault		0A
L431-239 Historic Properties Vault	MH7	4/0, 160 m	
MH7	MH15		
MH15	L431-240 Law Courts Vault		
Law Courts Vault	MH111	3/0, $50 \mathrm{~m}, \mathrm{NB}$ radial	
MH111	Ferry Term. Vault		
Ferry Term. Vault	MH13		
MH13	Riser Pole		
L431-241 Law Courts Vault	MH15	4/0, 140 m	
MH15	MH24		4A
MH24	L431-242 Hist. Prop. Prom. Vault		
L431-243 Hist.   Prop. Prom. Vault	MH24	4/0, 190 m	
MH24	MH25		4A
MH25	Royal Bank Vault		4A


Royal Bank Vault	MH25		4 A
MH25	L431-244 Bank of   Montreal		2 A
L431-245 Bank of   Montreal	MH25	$3 / 0,70 \mathrm{~m}$	2 A
MH25	MH105		0A
MH105	MH25	$3 / 0,170 \mathrm{~m}$	0A
MH25	MH55		1A
MH55	MH56		12A
MH56	L431-209 Art   Gallery Vault		0A


(K) 1H-419 MH22 to 28H-413			
From	To	Cable	Available Ducts
L431-176 MH22	MH23	$750,240 \mathrm{~m}$	
MH23	MH30		6A
MH30	28H-413   Scotia Square		2 A

## (L) 1H-431 to Art Gallery Vault

From	To	Cable	Available Ducts
1H-431	MH2	750, 380 m	12A
MH2	MH3		2A
MH3	MH60		2A
MH60	Riser D431-001		0A
Riser D431-354	MH59	750, 150 m	0A
MH59	MH58		9A
MH58	MH57	750, 90 m	9A
MH57	MH148		
MH148	Ralston Vault	750, 100 m	
Ralston Vault	MH57	750, 160 m	
MH57	MH7		8A
MH7	Keith’s Brewery Vault		1A
Keith's Brewery	MH7	750, 170 m	1A
MH7	Harbour Walk Vault		5A
Harbour Walk Vault	MH7	750, 180 m	5A
MH7	MH8		15A
MH8	Summit Place Vault		
Summit Place Vault	MH89	750, 190 m	
MH89	MH49		5A
MH49	MH51		9A
MH51	Founder's Square Vault		0A
Founder's Square	MH51	750, 110 m	0A


Vault			
MH51	MH52		5A
MH52	Bedford Row Vault		
Bedford Row Vault	MH52	750, 100 m	3A
MH52	MH53		12A
MH53	Public Works Vault		
Public Works Vault	MH53	750, 180 m	
MH53	MH12		
MH12	MH88		
MH88	Maritime Museum Vault		,
Maritime Museum Vault	MH88	750, 320 m	
MH88	MH12		
MH12	MH13		,
MH13	MH56		
MH56	Art Gallery Vault		

## APPENDIX B - Primary Service Cables

Note: Due to short cable length, the primary services located in the same with the switch vault or manhole may not be shown in the list.

1 of 4

1H-403 Primary Service Cables		
CS Number	Cable Size [AWG], [kcmil]	Cable Length [m]
CS431-139	$3 / 0$	70
CS431-170-T2	$\# 1$	160
CS431-150	750	10
CS431-221	$3 / 0$	10
CS431-227	$3 / 0$	40
CS431-265	350	60
CS431-426	350	40
CS431-046	$3 / 0$	50
CS431-182	$3 / 0$	150
CS431-270	750	80
CS431-001	$3 / 0$	50
CS431-211	$3 / 0$	80
CS431-162	$3 / 0$	100
CS431-154	$3 / 0$	40
CS431-402	$3 / 0$	50
CS431-430	$3 / 0$	150
CS431-531	$\# 1$	100
CS431-036	$3 / 0$	50
CS231-012	$1 / 0$	200
CS231-038	$1 / 0$	270
CS431-428	$3 / 0$	10
CS431-197	$3 / 0$	130
CS431-137	$3 / 0$	100
CS431-185	$3 / 0$	20
CS431-184	$3 / 0$	10


1H-405 Primary Service Cables		
CS Number 4		
CS431-007	Cable Size [AWG], [kcmil]	Cable Length [m]
CS431-012	$3 / 0$	50
CS431-005	$3 / 0$	70
CS431-504	$3 / 0$	50
CS431-505	-	-
CS431-506	-	-
CS431-507	-	-
CS431-508	-	-


1H-419 Primary Service Cables		
CS Number	Cable Size [AWG], [kcmil]	Cable Length $[\mathrm{m}]$
CS431-351	$3 / 0$	10
CS431-138	$3 / 0$	70
CS431-196-T2	750	30
CS431-268	$\# 1$	50
CS431-279	$3 / 0$	10

4 of 4

1H-431 Primary Service Cables		
CS Number	Cable Size [AWG], [kcmil]	Cable Length [m]
CS431-205	$\# 1$	55
CS431-002	$3 / 0$	50
CS431-345	$\# 1$	50
CS431-247	$\# 1$	30
CS431-049	$\# 1$	10
CS431-217	$3 / 0$	10
CS431-220	$3 / 0$	220
CS431-271	$3 / 0$	50
CS431-450	350	270

## APPENDIX C - Splices and Terminations

The allocation of the cable accessories below is assumed based on single line diagrams and may not be an exact representation of the actual type or quantity. For accessory legend see 5.2.

Splices and Terminations									
MH\#   /Vault	Equip. in MH	1H-403		1H-405		1H-419		1H-431	
		Feeder	Service	Feeder	Service	Feeder	Service	Feeder	Service
001									
002									
003							-	S	
004		S		S		S			
005									
006		S		S		S			
007						,			
008									
009						,		-	
010		S		S		S			
011						$\square$		,	
012					-			S	
013									
014									
015							$\square$		
016									
017									
018			,						
019		-							
020						S			
021									
022	TX+SW	,				3T	2T+2L		
023						S			
024	$\square$	,	(	-					
025									
026				S					
027									
028		S							
029									
030									
031		-							
032						S			
033									
034	SW	2T	T+L						
035									
036		T							
037									
038									
039		2s							
040	SW	2T	T+L						
041				2s					
042		S		2s					
043		S							



096									
097									
098									
099									
100									
101									
102		S							
103									
104									
105	TX+SW					2T	T+L		
106									
107									
108	TX		L				8		
109									
110									
111									
112									
113									
114									
115	TX+SW	2T	4T+4L						
116		2T	$2 \mathrm{~T}+2 \mathrm{~L}$						
117	TX+SW	2T	T+L						
118									
119									
120	SW						C		
121									
122	TX								
123	TX+SW	2T	2T+2L						
124	TX								
125	TX+SW					2T	2T+2L		
126	Adj Sw	2LF	$\begin{gathered} 2 \mathrm{LF}+2 \\ \mathrm{~L} \end{gathered}$						
127									
128									
129									
130									
131	TX+SW	5T	5T+5L						
132	TX+SW	2T	$2 \mathrm{~T}+\mathrm{L}$						
133	TX+SW			4T	4T+4L				
134	-								
135	-								
136									
137		-							
138									
139									
140									
141									
142									
143									
144									
145									
146									
147									
148	TX+SW							2T	$2 \mathrm{~T}+2 \mathrm{~L}$


149									
150									
151									
152									
153									
154	SW								
155									
156									
157									
158									
159	TX	2 T	2T+2L						
160									
161							-		
162									
163						,			
164									
165						(			
166									
167						,			
168									
169						$\square$		V	
170									
171									
200				,					
B01	TX+SW			,	-		?		
B02	TX+SW			,	,				
D01				-	-				
D02	TX			-					
D03	SW								
D04									
D05					-				
D06			-						
D07									
D08	-		-	-					
D09									
D10	SW	-		-					
D11	SW								
D12	-								
D13	TX+SW								
D14	TX+SW								
D15									
D16	TX+SW								
D17									
D18	TX+SW								
D19									
D2	TX								
D20	TX								
D21	TX+SW								
D22									
D23	TX+SW								
D24									
D25									
D26									



n									
$\begin{aligned} & \text { Hollis } \\ & 1801 \\ & \hline \end{aligned}$						2T	T+L		
Art   Gallery						3T	T+L	T	
Royal Bank						2LF	LF		
Historic Prop. Warerfro nt						2LF	LF		
Ferry Terminal						2LF			
Law Courts						2T	$\begin{aligned} & 2 \mathrm{~T}+3 \mathrm{~L} \\ & \mathrm{~F} \end{aligned}$		
Hist Prop. Promen ade						2T	$\mathrm{T}+\mathrm{L}$		
Bank of Montreal						$2 \mathrm{LF}$	LF		
Ralston Building								2T	T+L
Summit Place								2T	T+L
```Founder' s Square```								3T	T+L
Bedford Row								2T	$2 \mathrm{~T}+2 \mathrm{~L}$
Public Works Canada								2T	2T+2L
Barringt on Place		2T	T+L						
Market St 1770			4L						
6H Proctor Street			-			6LF			
O/H section								2LF	4LF
Keith's Brewery		1						2T	$2 \mathrm{~T}+2 \mathrm{~L}$
Harbour Walk								2T	T+L
Maritime Museum								2T	$2 \mathrm{~T}+2 \mathrm{~L}$
28H South Pad Vault		10LF		$\begin{gathered} 36 \mathrm{LF}+ \\ 2 \mathrm{~T} \\ \hline \end{gathered}$		LF			
Center Pad Vault				4T	T+L				

Scotia Tower Vault									
North Pad Vault									
MacKee n Pad Vault									
Trade Mart Vault				$4 T$	T+L				

APPENDIX D - Art Gallery Tie (Details)

Fig. 4.3 Art Gallery Ductbank Extension
The inlaid brick manhole cover should be replaced with a different type of cover that can be quickly removed and reinstalled as required.

Fig. 4.4 Manhole MH56

The electrical connections in the vault will have to be modified to allow for a new switch. One of the options would be to install a new two-way 200 A VacPac switch and relocate the CS431-272 primary service from the existing four-way VacPac switch to the new switch. The source side of the new switch will be piggybacked at L431-209. See Fig. 4.5 and 4.6 for details. This will free up one of the 600 A switches on the existing VacPac which will be used to tie-in the feeder 1H-424.

Fig. 4.5 Electrical Connections Before and After

Fig. 4.6 New Two-Way Switch in the Vault

The following is the list of basic jobs for the project:

1. Install nine 100 mm ducts (3 spare) between the Art Gallery vault and MH56 (approx. $8 \mathrm{~m})$.
2. Repair or replace manhole cover MH56
3. Install six 750 kcmil Al cables from MH13 through MH56 to Art Gallery vault (60 70 m)
4. Install new 2-way 200 A VacPac switch in the vault. Cooper model \# 21VP125-22.

The SMD-20 fuse mounts in the vault may need to be slightly moved to allow for proper clearance.
5. Transfer cs431-272 from four-way to two-way VacPac switch. The source side of the new switch connects to L431-209.
6. Terminate and connect the new cables to L431-212 -the freed-up switch.
7. Splice-in the other end of the cable to the feeder 1H-424 in MH13 using 600A deadbreak terminations.
8. Consider installing barriers in front of the fuses in the vault.

APPENDIX E - Deadfront Splice Specifications for 750 kcmil Cable

One three phase separable deadfront splice on the full size feeder cable will require the following materials:

$\#$	Description	NSPI Code	QTY	Price
1	Basic Shielded Elbow 25 kV	$5465-2370$	6	$\$ 76.87 / \mathrm{ea}$
2	Cable Adapter \#750, Compact	$5465-0189$	6	$\$ 15.84 / \mathrm{ea}$
3	Connecting Plug 25 kV	$5465-7400$	3	$\$ 79.26 / \mathrm{ea}$
4	Basic Insulating Plug	$5465-7350$	6	$\$ 46.29 / \mathrm{ea}$
5	Conductor Contact, \#750 Compact	$5465-1320$	6	$\$ 33.17 / \mathrm{ea}$
6	Constant Force Spring	$5465-0655$	6	$\$ 13.56 / \mathrm{ea}$
7	Braid Flexible Tinned	$5465-0650$	3 m	$\$ 7.98$ per ft

CI Number: 40338

Title: 16W-301 Hebron Reconductor
Start Date: 2011/04
Final Cost Date: 2011/10
Function: Distribution
Forecast Amount: $\quad \$ 350,000$

DESCRIPTION:

This project provides for the costs associated with upgrading conductor on the $16 \mathrm{~W}-301$ feeder, out of Hebron toward Port Maitland, to a larger conductor to accommodate load increases in the area. The feeder conductor will be replaced from the 16 W Hebron Substation, to the first set of reclosers.

Summary of Related CI's +/- 2 years:
No other projects in 2009,2010,2011,2012 and 2013

JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Overloaded Equipment
Why do this project?
Completion of this project will ensure that the system is able to meet the growing load requirements in the area.

Why do this project now?

Load increases in the area dictate that this project must be completed to accommodate the increase in customers in this area.

Why do this project this way?

Upgrading the 16W-301 feeder to a larger size conductor accommodates load increases on the existing feeder.
Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

- 16W-301 Hebron Reconductor

Parent CI Number			800-Services - Admin.		Approved Date	
	Cost	entre : 800			Budget Version	2011 ACE Plan
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		1,488	0	1,488
095		095-COPS Contracts AO			0	
013	002	013 - COPS Contracts	002 - DP - Land Rights	21,654	0	21,654
012	035	012 - Materials	035 - DP - Wood Poles	13,444	0	13,444
013	035	013 - COPS Contracts	035 - DP - Wood Poles	\square	0	\square
012	039	012 - Materials	039 - DP - O/H Cond.	51,558	0	51,558
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
012	040	012 - Materials	040 - DP - O/H Cond.Devices	2,592	0	2,592
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
013	052	013-COPS Contracts	052 - DP - Services	\square	0	-
			Total Cost:	350,000	0	350,000
			Original Cost:	23,067		

CI 40338-16W-301 Hebron Reconductor

The following is a breakdown of costs associated with the 16W-301 Hebron Reconductor Project.

Administrative Overhead and Interest Materials
Contracts

\$350,000

This project will be completed by a_contractor at an estimated rate of \$ per standard work unit hour. Included is \$ of contracts for land rights. The material cost is based on estimates from similar projects.

CI Number: 40328

Title: Feeder Exit Cable Replacements
Start Date: 2011/04
Final Cost Date: 2011/12
Function: Distribution
Forecast Amount: \$317,587

DESCRIPTION:

This project provides for the costs associated with replacing deteriorated feeder exit cables at the 48H Penhorn Substation, and the 101H Cobequid Substation.

Summary of Related CI's +/- 2 years:
This is a multi-year project that will continue beyond 2011. Future CIs TBD

JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Deteriorated Conductor

Why do this project?

This work is being done as part of the overall customer reliability improvement investment. This is year two of a five year (2010-2014) plan to improve reliability to NSPI's customers. Deteriorated feeder exit cables have the potential to affect the reliability of their associated feeder through failure generally leading to lengthy customer outages. The purpose of this project is to replace such cables prior to their failure. It is predicted that replacing 48H and 101 H feeder exit cables will prevent feeder exit cable failure outages, which would result in approximately 165,000 customer hours of interruption.

Why do this project now?

This project is part of an annual replacement program in which all feeder exit cables at two substations will be replaced.

Why do this project this way?

The planned replacement of feeder exit cables allows for the controlled upgrade of deteriorated plant, focusing on those that are the greatest risk to reliability, based on feeder inspection data.

Parent CI Number	$:$
Cost Centre	$: 800$

- 800-Services - Admin

Approved Date

Budget Version
2011 ACE Plan

Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
092		092-Vehicle T\&D OT Labour AO			6,587	0	6,587
092		092-Vehicle T\&D Reg. Labour AO			13,174	0	13,174
094		094 - Interest Capitalized			6,953	0	6,953
095		095-COPS Overtime Labour AO			10,035	0	10,035
095		095-COPS Contracts AO			18,768	0	18,768
095		095-COPS Regular Labour AO			20,069	0	20,069
001	046	001 - T\&D Regular Labour	046-DP - U/G Conductor		26,000	0	26,000
002	046	002 - T\&D Overtime Labour	046 - DP - U/G Conductor		26,000	0	26,000
012	046	012 - Materials	046 - DP - U/G Conductor		110,000	0	110,000
013	046	013 - COPS Contracts	046-DP - U/G Conductor		80,000	0	80,000
				Total Cost:	317,587	0	317,587
				Original Cost:	50,000		

CI 40328 - Feeder Exit Cable Replacements

The following is a breakdown of costs associated with the Feeder Exit Cable Replacements Project.

Administrative Overhead and Interest $\$ 75,587$
Materials
\$110,000
Contracts
\$80,000
Labour
\$52,000
Total \$317,587

This project, for the most part, will be completed by NSPI personnel at a rate of approximately $\$$ per person day. The contract portion would be civil work and cable laying which would not be completed by an affiliate. The materials portion of the project is based on similar feeder exit cable replacement projects in the past.

CI Number: 40211

Title: 2011 3H/6H Replacement Program
Start Date: 2011/03
Final Cost Date: 2011/12
Function: Distribution
Forecast Amount: \$306,895

DESCRIPTION:

This project provides for the replacement of 10 model 3 H and 6 H hydraulic reclosers. There are approximately 20 of these reclosers remaining in the Nova Scotia Power Inc. distribution system. It is anticipated all of these reclosers will be replaced over a 3 year period (2010-2012). The replacements will start with the oldest reclosers first. Devices targeted for 2011 replacement include 509V-302, R318-001, R318-003, R312-008, R316-018, R315-010, 624V311, R312-004, R356-025, 545N-301, R323-006, 704H-311.

Summary of Related CI's +/- 2 years:
2010 CI 38867 Replacement of 3H and 6H Reclosers \$272,568
2012 CI TBD Replacement of 3H and 6H Reclosers

JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: System Production

Why do this project?

This work is being done as part of the overall customer reliability improvement investment. This is part of the five year (2010-2014) plan to improve reliability to NSPI’s customers. This project is required to replace deteriorated equipment, which is having a negative effect on distribution system reliability.

Why do this project now?

These reclosers are approximately 40 years old and are at the end of their expected product life. Deterioration of these reclosers has a negative impact on customer service reliability. Replacement of these devices in 2011 will prevent failures, thereby averting over 9,000 customer hours of interruption.

Why do this project this way?

Replacing approximately 10 reclosers per year will provide the opportunity to manage this work in a cost effective manner.

Parent CI Number	$:$
Cost Centre	$: 800$

Approved Date
: 800

- 800-Services - Admin

Budget Version
2011 ACE Plan

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO		22,098	0	22,098
094		094 - Interest Capitalized		4,406	0	4,406
095		095-COPS Contracts AO		117	0	117
095		095-COPS Regular Labour AO		33,663	0	33,663
001	040	001 - T\&D Regular Labour	040 - DP - O/H Cond.Devices	35,611	0	35,611
002	040	002-T\&D Overtime Labour	040 - DP - O/H Cond.Devices	0	0	0
011	040	011 - Travel Expense	040 - DP - O/H Cond.Devices	1,000	0	1,000
012	040	012 - Materials	040 - DP - O/H Cond.Devices	200,000	0	200,000
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices	500	0	500
041	040	041 - Meals \& Entertainment	040 - DP - O/H Cond.Devices	500	0	500
001	043	001 - T\&D Regular Labour	043 - DP - Substn Dev.	5,000	0	5,000
002	043	002 - T\&D Overtime Labour	043 - DP - Substn Dev.	0	0	0
001	085	001 - THERMAL Regular Labour	085 Design	0	0	0
002	085	002 - THERMAL Overtime Labour	085 Design	0	0	0
011	085	011 - Travel Expense	085 Design	1,000	0	1,000
041	085	041 - Meals \& Entertainment	085 Design	0	0	0
001	087	001 - T\&D Regular Labour	087 Field Super.\& Ops.	3,000	0	3,000
002	087	002-T\&D Overtime Labour	087 Field Super.\& Ops.	0	0	0
			Total Cost:	306,895	0	306,895
			Original Cost:	44,531		

CI 40211-2011 3H/6H Replacement Program

The following is a breakdown of costs associated with the 2011 3H/6H Replacement Project.

Administrative Overhead and Interest	$\$ 60,284$
Materials	$\$ 200,000$
Contracts	$\$ 500$
Labour	$\$ 43,611$
Other	$\$ 2,500$
Total	$\$ 306,895$

This project will be completed by NSPI personnel at a rate of approximately \$ per person day. The materials portion of the project, approximately $\$ 20,000$ per recloser, is based on a similar project, CI 38867 Replacement of 3 H and 6 H Reclosers, submitted in the 2010 Annual Capital Expenditure Plan.

CI Number: 40385

Title: 88W-323G Pinkney's Point Part 2
Start Date: 2011/06
Final Cost Date: 2011/12
Function: Distribution
Forecast Amount: \$295,351

DESCRIPTION:

The purpose of this project is to replace deteriorated plant. In total this job is to replace 51 poles, add 4 poles, reconductor 59 spans of primary single phase line to $2 / 0$, add two new cutouts and replace two transformers.

Summary of Related CI's +/- 2 years:
2010 - CI 39576 Pinkney’s Point Deteriorated Plant \$233,739

JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Deteriorated Conductor
Why do this project?
The plant referenced above is at the end of its useful life.
Why do this project now?
Replacement of this plant is necessary to minimize outages and improve reliability.

Why do this project this way?

Reuse of existing alignment minimizes environmental impact and eliminates the need to obtain new easements.
Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.
CI Number : 40385

Parent CI Number	$:$
Cost Centre	$: 800$

Approved Date

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		6,942	0	6,942
095		095-COPS Contracts AO			0	
012	035	012 - Materials	035 - DP - Wood Poles	8,884	0	8,884
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
012	039	012 - Materials	039 - DP - O/H Cond.	5,590	0	5,590
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
098	039	098 - Salvage	039 - DP - O/H Cond.	(209)	0	(209)
012	040	012 - Materials	040 - DP - O/H Cond.Devices	617	0	617
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices	\square	0	-
012	041	012 - Materials	041 - DP - O/H Line Transf.	4,300	0	4,300
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
098	041	098 - Salvage	041 - DP - O/H Line Transf.	(28)	0	(28)
013	042	013 - COPS Contracts	042 - DP - O/H Ln.Transf.Dev.	\square	0	\square
098	042	098 - Salvage	042 - DP - O/H Ln.Transf.Dev.	(65)	0	(65)
012	050	012 - Materials	050 - DP - Street Lights	198	0	198
013	050	013 - COPS Contracts	050 - DP - Street Lights	\square	0	\square
012	052	012 - Materials	052 - DP - Services	765	0	765
013	052	013 - COPS Contracts	052 - DP - Services		0	
098	052	098 - Salvage	052 - DP - Services	(105)	0	(105)
			Total Cost:	295,351	0	295,351
			Original Cost:	16,269		

CI 40385-88W-323G Pinkney's Point Part 2

The following is a breakdown of costs associated with the 88W-323G Pinkney's Point Part 2 Project.

Administrative Overhead and Interest Materials

Total
\$295,351
This project is proposed to be completed by a contractor at a rate of \$ per standard work unit hour. The material cost is based on past similar projects.

CI Number: 40273

Title: 101H-411 Targeted Feeder Replacements
Start Date: 2011/01
Final Cost Date: 2011/12
Function: Distribution
Forecast Amount: \$273,399

DESCRIPTION:

This project is part of a program to improve customer service and reliability, as measured by System Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI) performance on select feeders throughout the Province. Specifically, deteriorated poles and conductor, porcelain arrestors, cutouts, rusty transformers and guys will be replaced.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013.

JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Outage Performance

Why do this project?

This work is being done as part of the overall customer reliability improvement investment. This is year two of a five year (2010-2014) plan to improve reliability to NSPI's customers. Distribution equipment (e.g. poles, conductor, cutouts, and transformers) failures are a primary driver of customer outages. This project will address distribution equipment issues on feeder $101 \mathrm{H}-411$, out of the Cobequid Road Substation. This feeder, which is 30.2 km in length, was selected due to past performance, customer density and feeder length.

Why do this project now?

This feeder is included in the 2011 Reliability Investment Plan based on past performance, customer density and feeder length. It is expected that targeted replacements on $101 \mathrm{H}-411$ will result in annual savings of over 9,300 customer hours of interruption.

Why do this project this way?
This project will address the distribution equipment weaknesses on this feeder.
Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

Parent CI Number			- 800-Services - Admin.		Approved Date	
	Cost	entre : 800			Budget Version	2011 ACE Plan
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		9,497	0	9,497
095		095-COPS Contracts AO			0	
013	002	013 - COPS Contracts	002 - DP - Land Rights		0	
012	035	012 - Materials	035 - DP - Wood Poles	1,757	0	1,757
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
012	040	012 - Materials	040 - DP - O/H Cond.Devices	2,185	0	2,185
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	
013	041	013-COPS Contracts	041 - DP - O/H Line Transf.		0	
			Total Cost:	273,399	0	273,399
			Original Cost:	7,851		

CI 40273 101H-411 Targeted Feeder Replacements

The following is a breakdown of costs associated with the $101 \mathrm{H}-411$ Targeted Feeder Replacements Project.

Administrative Overhead and Interest Materials
Contracts
Total

\$273,399

This project is proposed to be completed by a contractor at an estimated rate of per standard work unit hour. The material cost is based on estimates of similar projects.

CI Number: 40265

Title: 77V-401 Targeted Feeder Replacements
Start Date: 2011/05
Final Cost Date: 2011/12
Function: Distribution
Forecast Amount: $\$ 267,321$

DESCRIPTION:

This project is part of a program to improve customer service and reliability, as measured by System Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI) performance on select feeders throughout the Province. Specifically, deteriorated poles and conductor, porcelain arrestors, cutouts, rusty transformers and guys will be replaced.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

JUSTIFICATION:

Justification Criteria: Distribution System
Sub Criteria: Outage Performance

Why do this project?

This work is being done as part of the overall customer reliability improvement investment. This is year two of a five year (2010-2014) plan to improve reliability to NSPI's customers. Distribution equipment (e.g. poles, conductor, cutouts, and transformers) failures are a primary driver of customer outages. This project will address distribution equipment issues on feeder $77 \mathrm{~V}-401$, out of the Conway Substation. This feeder, which is 61.7 km in length, was selected due to past performance, customer density and feeder length.

Why do this project now?

This feeder is included in the 2011 Reliability Investment Plan based on past performance, customer density and feeder length. It is expected that targeted replacements on $77 \mathrm{~V}-401$ will result in annual savings of around 3,200 customer hours of interruption.

Why do this project this way?
This project will address the distribution equipment weaknesses on this feeder.
Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

Parent CI Number			- 800-Services - Admin.		Approved Date Budget Version		
Cost Centre : 800					2011 ACE Plan		
Capital Item Accounts							
Acct	Actv	Account	Activity	Forecast Amount		Amount	Variance
094		094 - Interest Capitalized		7,477	0	7,477	
095		095-COPS Contracts AO		-	0	\square	
013	002	013 - COPS Contracts	002 - DP - Land Rights	\square	0	\square	
012	035	012-Materials	035 - DP - Wood Poles	4,687	0	4,687	
013	035	013 - COPS Contracts	035 - DP - Wood Poles	\square	0	\square	
012	039	012 - Materials	039 - DP - O/H Cond.	150	0	150	
012	040	012 - Materials	040 - DP - O/H Cond.Devices	23,039	0	23,039	
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	\square	
012	041	012 - Materials	041 - DP - O/H Line Transf.	4,913	0	4,913	
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0		
			Total Cost:	267,321	0	267,321	
			Original Cost:	21,504			

CI 40265 77V-401 Targeted Feeder Replacements

The following is a breakdown of costs associated with the 77V-401 Targeted Feeder Replacements Project.

Administrative Overhead and Interest Materials
Contracts

Total

\$267,321

This project is proposed to be completed by a contractor at an estimated rate of $\$$ per standard work unit hour. Included is \$ in contracts associated with land rights. The material cost is based on estimates of similar projects.

$\stackrel{\Im}{\boxed{\circ}}$

Functional Class
Distribution Plant
General Property
Transmission Plant
Transmission Plant
Transmission Plant
Transmission Plant
General Property

2011 Reliability Investment Plan

CI \#	Proj \#	Title
38867	D321	Replacement of 3H and 6H Reclosers
25575		Reliability Keltic Drive New Feeder
39269		2011 Recloser Additions
39270		2011 Dist. Cutout Replacements
39272		2011 Distribution Feeder Ties
40211		2011 3H/6H Replacement Program
40219		2011 Recloser Control Replacements
40220		2011 Halifax U/G Cable Replacement
40227		2011 Off Road to Roadside
40263		24C-442 Targeted Replacements
40264		37N-411 Targeted Replacements
40265		77V-401 Targeted Replacements
40267		37N-413 Targeted Replacements
40268		22N-401 Targeted Replacements
40273		101H-411 Targeted Replacements
40284		82V-423 Targeted Replacements
40291		2C-402 Targeted Replacements
40300		104H-432 Targeted Replacements
40328		Feeder Exit Cable Replacements
40545		2011 New Reliability Technologies
35742	P789	GIS Connectivity Project
25391		25 kV Bus Keltic Dr
40280		2011 Trans Switch \& Breaker Upgrade
40281		2011 Tx Line Insulator Replacement
40285		2011 Trans Subst Insulator \& Cutout
40274		New RTU Deployment

Nova Scotia Power Inc.
2011 Annual Capital Expenditure Plan

General Plant

Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

5 GENERAL PLANT
 (Millions of Dollars)

5.1 Five Year Plan and Highlights

- General Plant capital in 2011 focuses largely on Information Technology system replacements and vehicles.
- Year 2011 general plant capital is comprised of the following:
o $\quad \$ 9.3 \mathrm{M}$ New items with total spend greater than $\$ 250 \mathrm{~K}$ seeking ACE approval
o $\quad \$ 9.1 \mathrm{M}$ New items with total spend greater than $\$ 250 \mathrm{~K}$ for individual approval
o $\quad \$ 1.9 \mathrm{M}$ New items with total spend less than $\$ 250 \mathrm{~K}$
o \$18.3M Carryover Spending
o \$16.5M Routine Capital Spending

5.2 General Plant - Carryover Spending

Project Number	CINumber	Project Title	Start Date	Final Date	Previous Expenditure	2011 Budget	Subsequent Spending	Total Estimate
P772	29131	FAC Space 2011	2008/10	2011/06	\$50,458,657	\$7,756,889	\$0	\$58,215,546
*	38182	2010 Backup Control Centre	2010/11	2012/01	\$116,063	\$3,106,003	\$0	\$3,222,066
		Total Buildings			\$50,574,720	\$10,862,892	\$0	\$61,437,612
P789	35742	Connectivity Upgrade	2009/05	2012/03	\$1,721,234	\$1,443,434	\$0	\$3,164,667
*	34843	Oracle NLA License	2011/01	2011/03	\$0	\$1,016,000	\$0	\$1,016,000
P819	34782	Oracle Financials Upgrade	2010/05	2011/12	\$286,403	\$455,942	\$0	\$742,344
P797	32163	Treasury Management System Upgrade	2009/12	2011/03	\$306,524	\$373,963	\$0	\$680,487
		Total Computers			\$2,314,161	\$3,289,339	\$0	\$5,603,498
P833	29009	Right of Way Purchase Northern NS	2010/09	2013/05	\$918,491	\$2,582,498	\$961,504	\$4,462,493
P834	40103	U\&U Load Control Demo	2010/10	2014/03	\$109,517	\$957,082	\$3,227,194	\$4,293,793
*	33562	FAC Land Registration Act	2010/09	2014/12	\$323,120	\$349,658	\$1,226,384	\$1,899,162
**	38849	Harbour East Land Purchase and Right of Way	2011/03	2011/12	\$0	\$257,157	\$0	\$257,157
P813	38900	Opsym	2010/05	2011/04	\$734,718	\$48,000	\$0	\$782,718
Total Other General Plant					\$2,085,846	\$4,194,395	\$5,415,082	\$11,695,323
Total General Plant					\$54,974,727	\$18,346,626	\$5,415,082	\$78,736,433

Note 1: Project Listings are as of December 2010
Note 2: * Pending UARB Approval
Note 3: ** Name change from Eastern Passage to Harbour East Land Purchase and Right of Way. UARB Approved, pending activation.

Nova Scotia Power Inc.
2011 Annual Capital Expenditure Plan

5.3 General Plant - New Item Spending

Tab\#	C\#	Project Title	2011 Budget	Project Total	Page
GP1	40298	SAN and Backup Replacement	\$947,305	\$947,305	
GP2	40365	MS Sharepoint Platform Upgrade	703,711	908,174	
GP3	40290	Enterprise Geographic Information System (GIS)	320,381	320,381	
GP4	40275	Eastlink Outage Information Interface	296,460	296,460	
		Total Computers New Spending	\$2,267,857	\$2,472,320	
GP5	40229	Protective Equipment Test Center Upgrade	\$875,542	\$875,542	
GP6	40274	New RTU Deployment	509,706	509,706	
GP7	40245	2011 RTU Replacement Program	459,517	459,517	
		Total Equipment Replacement New Spending	\$1,844,765	\$1,844,765	
GP8	40278	OMS Upgrade 2011	\$2,050,951	\$2,050,951	
GP9	40299	Field Office Phone System Replacement	833,557	833,557	
GP10	40249	New Chester Microwave Radio Link	407,925	407,925	
GP11	40261	Newtonville SR500 Multipoint Radio System Replacement	351,681	351,681	
GP12	40252	2011 Replace Microwave Radio System	351,658	351,658	
GP13	40247	2011 Radio Tower Upgrades	324,686	324,686	
		Total Telecommunication New Spending	\$4,320,458	\$4,320,458	
GP14	40105	Boiler Condition and Data Tracking Software	\$570,643	\$570,643	
GP15	40293	People Soft Workflow	276,578	276,578	
		Total Other General Plant	\$847,221	\$847,221	
		Total General Plant New Spending	\$9,280,301	\$9,484,764	

CI Number: 40298

Title: SAN and Backup Replacement
Start Date: 2011/01
Final Cost Date: 2011/04
Function: General Plant
Forecast Amount: $\quad \$ 947,305$

DESCRIPTION:

This project will update and replace the current SAN (Storage Area Network) and Backup system. The current systems are approximately seven years old and are no longer supported by the vendor. Updating the system will keep technologies, systems and hardware current with industry practice and support, allowing for continued operation.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Computers
Why do this project?
The current SAN and Backup system is now seven years old and is no longer supported by the vendor.
Why do this project now?
This system is no longer supported by the vendor and replacement is now required.
Why do this project this way?
Replacement of the system is the most cost effective option.

Parent CI Number	$:$
Cost Centre	$: 027$

Approved Date

Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
001		001 - IT Regular Labour			24,000	0	24,000
028		028 - Consulting				0	
035		035 - Comp.Hrdwr \& Op.Sftwr				0	
094		094 - Interest Capitalized			10,508	0	10,508
095		095-IT Regular Labour AO			12,797	0	12,797
				Total Cost:	947,305	0	947,305

Recommendation :

Justification of this project is based upon the opportunity cost of avoided maintenance and productivity loss. In the event that the Storage Area Network (SAN) and Backup system became unavailable a significant portion of the Company's employees would be unable to continue working. This system operates many of the Company's key critical applications such as Oracle Financials, Maximo and PeopleSoft.

Notes/Comments :

SAN Backup Scenario 1

This scenario is based upon a 15\% probability that the SAN and Backup system would become unavailable (increasing 3\% annually), with a service interruption lasting 1 day and affecting approx. 525 employees; the length of outage is expected to increase from 1 day to 10 days in duration over the life of $\mathbf{7}$ years.

SAN Backup Scenario 2

This scenario is based upon increasing probabilities of failure (starting at 15\% and increasing exponentially) and impacting a greater portion of employees directly (50\%).

SAN Backup Scenario 3

This scenario is based upon increasing probabilities of failure (starting at 25\% and increasing exponentially) and impacting greater portion of employees directly (60%).

SAN Backup Scenario 4

SAN and Backup Replacement

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2010	-	-	-	-	-	-	- -	-	1.000	-	-
2011	-	-	$(947,305.0)$	260,508.9	686,796.1	$(947,305.0)$	84,317.7	(862,987.3)	0.937	$(808,949.5)$	$(808,949.5)$
2012	-	14,081.3	-	377,737.9	309,058.3	14,081.3	112,680.2	126,761.5	0.879	111,383.6	$(697,565.9)$
2013	-	34,618.1	-	169,982.0	139,076.2	34,618.1	41,962.8	76,580.9	0.824	63,077.0	(634,488.8)
2014	-	83,186.1	-	76,491.9	62,584.3	83,186.1	$(2,086.0)$	81,100.1	0.772	62,616.6	$(571,872.2)$
2015	-	195,335.1	-	34,421.4	28,162.9	195,335.1	$(49,883.3)$	145,451.8	0.724	105,269.9	$(466,602.3)$
2016	-	283,045.4	-	15,489.6	12,673.3	283,045.4	$(82,942.3)$	200,103.1	0.678	135,755.0	$(330,847.3)$
2017	-	323,902.7	-	6,970.3	5,703.0	323,902.7	$(98,249.0)$	225,653.7	0.636	143,503.1	$(187,344.2)$
2018	-	367,282.1	-	3,136.6	2,566.3	367,282.1	$(112,885.1)$	254,397.0	0.596	151,651.9	$(35,692.3)$
2019	-	412,648.3	-	1,411.5	1,154.9	412,648.3	$(127,483.4)$	285,164.9	0.559	159,348.9	123,656.6
2020	-	-	-	635.2	519.7	-	196.9	196.9	0.524	103.1	123,759.7
2021	-	-	-	285.8	233.9	-	88.6	88.6	0.491	43.5	123,803.2
2022	-	-	-	128.6	105.2	-	39.9	39.9	0.460	18.4	123,821.6
2023	-	-	-	57.9	47.4	-	17.9	17.9	0.431	7.7	123,829.3
2024	-	-	-	26.0	21.3	-	8.1	8.1	0.404	3.3	123,832.6
2025	-	-	-	11.7	9.6	-	3.6	3.6	0.379	1.4	123,834.0
2026	-	-	-	5.3	4.3	-	1.6	1.6	0.355	0.6	123,834.6
2027	-	-	-	2.4	1.9	-	0.7	0.7	0.333	0.2	123,834.8
2028	-	-	-	1.1	0.9	-	0.3	0.3	0.312	0.1	123,834.9
2029	-	-	-	0.5	0.4	-	0.1	0.1	0.293	0.0	123,835.0
2030	-	-	-	0.2	0.2	-	0.1	0.1	0.274	0.0	123,835.0
2031	-	-	-	0.1	0.1	-	0.0	0.0	0.257	0.0	123,835.0
2032	-	-	-	0.0	0.0	-	0.0	0.0	0.241	0.0	123,835.0
2033	-	-	-	0.0	0.0	-	0.0	0.0	0.226	0.0	123,835.0
2034	-	-	-	0.0	0.0	-	0.0	0.0	0.212	0.0	123,835.0
2035	-	-	-	0.0	0.0	-	0.0	0.0	0.199	0.0	123,835.0
2036	-	-	-	0.0	0.0	-	0.0	0.0	0.186	0.0	123,835.0
2037	-	-	-	0.0	0.0	-	0.0	0.0	0.174	0.0	123,835.0
2038	-	-	-	0.0	0.0	-	0.0	0.0	0.164	0.0	123,835.0
2039	-	-	-	0.0	0.0	-	0.0	0.0	0.153	0.0	123,835.0
2040	-	-	-	0.0	0.0	-	0.0	0.0	0.144	0.0	123,835.0
2041	-	-	-	0.0	0.0	-	0.0	0.0	0.135	0.0	123,835.0
2042	-	-	-	0.0	0.0	-	0.0	0.0	0.126	0.0	123,835.0
2043	-	-	-	0.0	0.0	-	0.0	0.0	0.118	0.0	123,835.0
2044	-	-	-	0.0	0.0	-	0.0	0.0	0.111	0.0	123,835.0
2045	-	-	-	0.0	0.0	-	0.0	0.0	0.104	0.0	123,835.0
2046	-	-	-	0.0	0.0	-	0.0	0.0	0.098	0.0	123,835.0
2047	-	-	-	0.0	0.0	-	0.0	0.0	0.091	0.0	123,835.0
2048	-	-	-	0.0	0.0	-	0.0	0.0	0.086	0.0	123,835.0
2049	-	-	-	0.0	0.0	-	0.0	0.0	0.080	0.0	123,835.0
2050	-	-	-	0.0	0.0	-	0.0	0.0	0.075	0.0	123,835.0
Total	-	1,714,099.1	(947,305.0)	947,305.0	1,248,720.2	766,794.1	(234,210.3)	532,583.7	14.8	123,835.0	229,048.6

SAN and Backup Replacement

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2010	-	-	-	-	-	-	-	-	1.000	-	-
2011	-	-	$(966,251.1)$	265,719.1	700,532.0	$(966,251.1)$	86,004.0	$(880,247.1)$	0.937	$(825,128.5)$	$(825,128.5)$
2012	-	23,868.8	(1)	385,292.6	315,239.4	23,868.8	111,987.0	135,855.8	0.879	119,374.6	(705,753.8)
2013	-	80,624.4	-	173,381.7	141,857.7	80,624.4	28,754.8	109,379.1	0.824	90,091.8	$(615,662.0)$
2014	-	263,617.9	-	78,021.8	63,836.0	263,617.9	$(57,545.8)$	206,072.1	0.772	159,106.2	$(456,555.7)$
2015	-	583,652.9	-	35,109.8	28,726.2	583,652.9	$(170,048.4)$	413,604.6	0.724	299,343.8	$(157,211.9)$
2016	-	802,557.6	-	15,799.4	12,926.8	802,557.6	$(243,895.0)$	558,662.6	0.678	379,010.8	221,798.8
2017	-	885,298.3	-	7,109.7	5,817.1	885,298.3	$(272,238.4)$	613,059.8	0.636	389,871.8	611,670.6
2018	-	967,373.2	-	3,199.4	2,617.7	967,373.2	$(298,893.9)$	668,479.3	0.596	398,496.0	1,010,166.6
2019	-	1,053,548.7	-	1,439.7	1,178.0	1,053,548.7	$(326,153.8)$	727,394.9	0.559	406,465.0	1,416,631.6
2020	-	-	-	647.9	530.1	-	200.8	200.8	0.524	105.2	1,416,736.8
2021	-	-	-	291.5	238.5	-	90.4	90.4	0.491	44.4	1,416,781.2
2022	-	-	-	131.2	107.3	-	40.7	40.7	0.460	18.7	1,416,799.9
2023	-	-	-	59.0	48.3	-	18.3	18.3	0.431	7.9	1,416,807.8
2024	-	-	-	26.6	21.7	-	8.2	8.2	0.404	3.3	1,416,811.1
2025	-	-	-	12.0	9.8	-	3.7	3.7	0.379	1.4	1,416,812.5
2026	-	-	-	5.4	4.4	-	1.7	1.7	0.355	0.6	1,416,813.1
2027	-	-	-	2.4	2.0	-	0.8	0.8	0.333	0.2	1,416,813.4
2028	-	-	-	1.1	0.9	-	0.3	0.3	0.312	0.1	1,416,813.5
2029	-	-	-	0.5	0.4	-	0.2	0.2	0.293	0.0	1,416,813.5
2030	-	-	-	0.2	0.2	-	0.1	0.1	0.274	0.0	1,416,813.5
2031	-	-	-	0.1	0.1	-	0.0	0.0	0.257	0.0	1,416,813.5
2032	-	-	-	0.0	0.0	-	0.0	0.0	0.241	0.0	1,416,813.5
2033	-	-	-	0.0	0.0	-	0.0	0.0	0.226	0.0	1,416,813.5
2034	-	-	-	0.0	0.0	-	0.0	0.0	0.212	0.0	1,416,813.6
2035	-	-	-	0.0	0.0	-	0.0	0.0	0.199	0.0	1,416,813.6
2036	-	-	-	0.0	0.0	-	0.0	0.0	0.186	0.0	1,416,813.6
2037	-	-	-	0.0	0.0	-	0.0	0.0	0.174	0.0	1,416,813.6
2038	-	-	-	0.0	0.0	-	0.0	0.0	0.164	0.0	1,416,813.6
2039	-	-	-	0.0	0.0	-	0.0	0.0	0.153	0.0	1,416,813.6
2040	-	-	-	0.0	0.0	-	0.0	0.0	0.144	0.0	1,416,813.6
2041	-	-	-	0.0	0.0	-	0.0	0.0	0.135	0.0	1,416,813.6
2042	-	-	-	0.0	0.0	-	0.0	0.0	0.126	0.0	1,416,813.6
2043	-	-	-	0.0	0.0	-	0.0	0.0	0.118	0.0	1,416,813.6
2044	-	-	-	0.0	0.0	-	0.0	0.0	0.111	0.0	1,416,813.6
2045	-	-	-	0.0	0.0	-	0.0	0.0	0.104	0.0	1,416,813.6
2046	-	-	-	0.0	0.0	-	0.0	0.0	0.098	0.0	1,416,813.6
2047	-	-	-	0.0	0.0	-	0.0	0.0	0.091	0.0	1,416,813.6
2048	-	-	-	0.0	0.0	-	0.0	0.0	0.086	0.0	1,416,813.6
2049	-	-	-	0.0	0.0	-	0.0	0.0	0.080	0.0	1,416,813.6
2050	-	-	-	0.0	0.0	-	0.0	0.0	0.075	0.0	1,416,813.6
Total	-	4,660,541.8	(966,251.1)	966,251.1	1,273,694.6	3,694,290.7	(1,141,664.4)	2,552,626.3	14.8	1,416,813.6	44,421,042.9

SAN and Backup Replacement

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2010	-	-	-	-	-	-	-	-	1.000	-	-
2011	-	-	$(966,251.1)$	265,719.1	700,532.0	$(966,251.1)$	86,004.0	$(880,247.1)$	0.937	$(825,128.5)$	$(825,128.5)$
2012	-	92,625.0	(1)	385,292.6	315,239.4	92,625.0	90,672.6	183,297.6	0.879	161,061.1	(664,067.3)
2013	-	266,759.5	-	173,381.7	141,857.7	266,759.5	$(28,947.1)$	237,812.4	0.824	195,877.9	$(468,189.4)$
2014	-	706,504.6	-	78,021.8	63,836.0	706,504.6	$(194,840.7)$	511,663.9	0.772	395,050.6	$(73,138.8)$
2015	-	1,777,655.6	-	35,109.8	28,726.2	1,777,655.6	$(540,189.2)$	1,237,466.4	0.724	895,608.8	822,470.0
2016	-	2,705,140.8	-	15,799.4	12,926.8	2,705,140.8	$(833,695.8)$	1,871,445.0	0.678	1,269,635.4	2,092,105.4
2017	-	3,000,562.4	-	7,109.7	5,817.1	3,000,562.4	$(927,970.3)$	2,072,592.1	0.636	1,318,052.7	3,410,158.1
2018	-	3,312,017.4	-	3,199.4	2,617.7	3,312,017.4	$(1,025,733.6)$	2,286,283.8	0.596	1,362,906.6	4,773,064.7
2019	-	3,638,707.1	-	1,439.7	1,178.0	3,638,707.1	$(1,127,552.9)$	2,511,154.2	0.559	1,403,221.8	6,176,286.5
2020	-	-	-	647.9	530.1	-	200.8	200.8	0.524	105.2	6,176,391.7
2021	-	-	-	291.5	238.5	-	90.4	90.4	0.491	44.4	6,176,436.1
2022	-	-	-	131.2	107.3	-	40.7	40.7	0.460	18.7	6,176,454.8
2023	-	-	-	59.0	48.3	-	18.3	18.3	0.431	7.9	6,176,462.7
2024	-	-	-	26.6	21.7	-	8.2	8.2	0.404	3.3	6,176,466.0
2025	-	-	-	12.0	9.8	-	3.7	3.7	0.379	1.4	6,176,467.4
2026	-	-	-	5.4	4.4	-	1.7	1.7	0.355	0.6	6,176,468.0
2027	-	-	-	2.4	2.0	-	0.8	0.8	0.333	0.2	6,176,468.3
2028	-	-	-	1.1	0.9	-	0.3	0.3	0.312	0.1	6,176,468.4
2029	-	-	-	0.5	0.4	-	0.2	0.2	0.293	0.0	6,176,468.4
2030	-	-	-	0.2	0.2	-	0.1	0.1	0.274	0.0	6,176,468.4
2031	-	-	-	0.1	0.1	-	0.0	0.0	0.257	0.0	6,176,468.5
2032	-	-	-	0.0	0.0	-	0.0	0.0	0.241	0.0	6,176,468.5
2033	-	-	-	0.0	0.0	-	0.0	0.0	0.226	0.0	6,176,468.5
2034	-	-	-	0.0	0.0	-	0.0	0.0	0.212	0.0	6,176,468.5
2035	-	-	-	0.0	0.0	-	0.0	0.0	0.199	0.0	6,176,468.5
2036	-	-	-	0.0	0.0	-	0.0	0.0	0.186	0.0	6,176,468.5
2037	-	-	-	0.0	0.0	-	0.0	0.0	0.174	0.0	6,176,468.5
2038	-	-	-	0.0	0.0	-	0.0	0.0	0.164	0.0	6,176,468.5
2039	-	-	-	0.0	0.0	-	0.0	0.0	0.153	0.0	6,176,468.5
2040	-	-	-	0.0	0.0	-	0.0	0.0	0.144	0.0	6,176,468.5
2041	-	-	-	0.0	0.0	-	0.0	0.0	0.135	0.0	6,176,468.5
2042	-	-	-	0.0	0.0	-	0.0	0.0	0.126	0.0	6,176,468.5
2043	-	-	-	0.0	0.0	-	0.0	0.0	0.118	0.0	6,176,468.5
2044	-	-	-	0.0	0.0	-	0.0	0.0	0.111	0.0	6,176,468.5
2045	-	-	-	0.0	0.0	-	0.0	0.0	0.104	0.0	6,176,468.5
2046	-	-	-	0.0	0.0	-	0.0	0.0	0.098	0.0	6,176,468.5
2047	-	-	-	0.0	0.0	-	0.0	0.0	0.091	0.0	6,176,468.5
2048	-	-	-	0.0	0.0	-	0.0	0.0	0.086	0.0	6,176,468.5
2049	-	-	-	0.0	0.0	-	0.0	0.0	0.080	0.0	6,176,468.5
2050	-	-	-	0.0	0.0	-	0.0	0.0	0.075	0.0	6,176,468.5
Total	-	15,499,972.4	(966,251.1)	966,251.1	1,273,694.6	14,533,721.3	(4,501,887.9)	10,031,833.4	14.8	6,176,468.5	206,713,950.1

SAN and Backup Replacement
SAN Backup Scenario 4

CI Number: 40365

Title: MS Sharepoint Platform Upgrade
Start Date: 2011/03
Final Cost Date: 2012/09
Function: General Plant
Forecast Amount: $\$ 908,174$

DESCRIPTION:

The current version of the NSPI SharePoint platform is the minimum feature version called Windows SharePoint Services 3.0. This version does not require user licensing as it only provides a limited amount of functionality in the areas of collaboration, document management, business data services, portal functions, and administration.

Upgrading to the licensed, full feature platform will ensure system stability, system scalability and enable a suite of features.

This project includes the implementation of the licensed version of SharePoint, an upgrade of the SharePoint platform to Microsoft's latest offering and implementation of new features available from this platform.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Computers

Why do this project?

Licensing the full product offering will enable NSPI to more fully leverage the features and functions SharePoint has to offer. These features include enhanced interoperability with the MS Office Suite (Word, Excel, etc), enhanced search capabilities, better permissions management, enhanced workflow, specialized services for Excel and other applications and the ability to create a portal style experience for users.

A more robust platform will be used to support other significant initiatives including NSPI Intranet, Customer Service process documentation, and DirectLine document management.

The licensed version of SharePoint provides improved redundancy and recovery mechanisms that will reduce system downtime in the event of hardware, software, or planned maintenance activities.

Why do this project now?

The new SharePoint platform provides better management features, which improves the ability of technology support resources to manage the significant growth with internal use that is currently happening and forecast to continue.

Why do this project this way?

This project will be executed with a combination of internal and external expert resources. This approach also ensures that knowledge and skills are grown in-house and sustained beyond the life of the project.

The project will use industry standard approaches, processes, and tools that have been proven successful by SharePoint contractors and endorsed by Microsoft (the SharePoint vendor).

CI Number	$: 40365$
Parent CI Number	$:$
Cost Centre	$: 027$

Cost Centre : 027

- 027-Administration

Approved Date

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		63,727	0	63,727
095		095-IT Regular Labour AO		134,046	0	134,046
001	072	001 - IT Regular Labour	072 - GP - Computer Equipment	251,400	0	251,400
011	072	011 - Travel Expense	072 - GP - Computer Equipment	17,000	0	17,000
028	072	028 - Consulting	072 - GP - Computer Equipment		0	
034	072	034 - Appl. Software	072 - GP - Computer Equipment		0	
035	072	035-Comp.Hrdwr \& Op.Sftwr	072 - GP - Computer Equipment		0	
041	072	041 - Meals \& Entertainment	072 - GP - Computer Equipment	3,000	0	3,000
056	072	056 - Training \& Development	072 - GP - Computer Equipment	21,000	0	21,000
			Total Cost:	908,174	0	908,174

Cl 40365 MS Sharepoint Platform Upgrade
 Summary of Alternatives

Budget Year :	2011
Division :	Integrated Customer Service
Department:	Information Technology
Originator:	

Date :
CI Number:
Project No. :

20-Dec-10
40365
N/A

	Alternative	After Tax WACC	PV of EVA $/$ NPV	Rank	IRR	Disc Pay
A	MS Sharepoint Scenario 1	6.68%	246,087	1	14.24%	8.1 years
B	MS Sharepoint Scenario 2	6.68%	83,478	2	9.39%	9.8 years
C	MS Sharepoint Scenario 3	6.68%	$-264,970$	4	-3.62%	0.0 years
D	MS Sharepoint Scenario 4	6.68%	0	3	\#NUM!	0.0 years

Recommendation :

Justification of this project is based upon estimates for corporate wide efficiency gains multiplied by the probability of acheivement. This project is expected to drive search, document management, workflow and community benefits to all SharePoint users which should reduce time spent performing each of those tasks.

Notes/Comments :

MS Sharepoint Scenario 1

Scenario 1 provides a conversative probability of achieving efficiency gains and benefits with a 3% increase in wage rates annually. Gains are projected estimating that SharePoint users will acheive on average a minute reduction in time to complete a process.

MS Sharepoint Scenario 2

Scenario 2 assumes increased efficiency gains, but with a lower probability of acheivement.

MS Sharepoint Scenario 3

Scenario 3 assumes the highest efficiency gains, but with the lowest probability of acheivement. Wages assume a 3\% annual increase. While this scenario displays a negative present value, it is preceded by scenarios 1 and 2.

MS Sharepoint Scenario 4

Cl 40365 MS Sharepoint Platform Upgrade

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2010	-	-	-	-	-	-	-	-	1.000	-	-
2011	-	-	$(908,174.0)$	249,747.9	658,426.2	$(908,174.0)$	80,834.7	(827,339.3)	0.937	$(775,533.6)$	(775,533.6)
2012	-	178,746.3	-	362,134.4	296,291.8	178,746.3	56,799.2	235,545.5	0.879	206,970.7	$(568,563.0)$
2013	-	184,108.7	-	162,960.5	133,331.3	184,108.7	$(6,555.9)$	177,552.7	0.824	146,244.1	$(422,318.9)$
2014	-	189,631.9	-	73,332.2	59,999.1	189,631.9	$(36,063.3)$	153,568.7	0.772	118,568.9	$(303,750.0)$
2015	-	195,320.9	-	32,999.5	26,999.6	195,320.9	$(50,319.6)$	145,001.3	0.724	104,943.8	$(198,806.2)$
2016	-	201,180.5	-	14,849.8	12,149.8	201,180.5	$(57,762.5)$	143,418.0	0.678	97,298.4	$(101,507.8)$
2017	-	207,216.0	-	6,682.4	5,467.4	207,216.0	$(62,165.4)$	145,050.5	0.636	92,244.0	$(9,263.8)$
2018	-	213,432.4	-	3,007.1	2,460.3	213,432.4	$(65,231.9)$	148,200.6	0.596	88,345.8	79,082.0
2019	-	219,835.4	-	1,353.2	1,107.2	219,835.4	$(67,729.5)$	152,105.9	0.559	84,996.1	164,078.1
2020	-	226,430.5	-	608.9	498.2	226,430.5	$(70,004.7)$	156,425.8	0.524	81,936.7	246,014.8
2021	-	-	-	274.0	224.2	-	84.9	84.9	0.491	41.7	246,056.5
2022	-	-	-	123.3	100.9	-	38.2	38.2	0.460	17.6	246,074.1
2023	-	-	-	55.5	45.4	-	17.2	17.2	0.431	7.4	246,081.5
2024	-	-	-	25.0	20.4	-	7.7	7.7	0.404	3.1	246,084.6
2025	-	-	-	11.2	9.2	-	3.5	3.5	0.379	1.3	246,085.9
2026	-	-	-	5.1	4.1	-	1.6	1.6	0.355	0.6	246,086.5
2027	-	-	-	2.3	1.9	-	0.7	0.7	0.333	0.2	246,086.7
2028	-	-	-	1.0	0.8	-	0.3	0.3	0.312	0.1	246,086.8
2029	-	-	-	0.5	0.4	-	0.1	0.1	0.293	0.0	246,086.9
2030	-	-	-	0.2	0.2	-	0.1	0.1	0.274	0.0	246,086.9
2031	-	-	-	0.1	0.1	-	0.0	0.0	0.257	0.0	246,086.9
2032	-	-	-	0.0	0.0	-	0.0	0.0	0.241	0.0	246,086.9
2033	-	-	-	0.0	0.0	-	0.0	0.0	0.226	0.0	246,086.9
2034	-	-	-	0.0	0.0	-	0.0	0.0	0.212	0.0	246,086.9
2035	-	-	-	0.0	0.0	-	0.0	0.0	0.199	0.0	246,086.9
2036	-	-	-	0.0	0.0	-	0.0	0.0	0.186	0.0	246,086.9
2037	-	-	-	0.0	0.0	-	0.0	0.0	0.174	0.0	246,086.9
2038	-	-	-	0.0	0.0	-	0.0	0.0	0.164	0.0	246,086.9
2039	-	-	-	0.0	0.0	-	0.0	0.0	0.153	0.0	246,086.9
2040	-	-	-	0.0	0.0	-	0.0	0.0	0.144	0.0	246,086.9
2041	-	-	-	0.0	0.0	-	0.0	0.0	0.135	0.0	246,086.9
2042	-	-	-	0.0	0.0	-	0.0	0.0	0.126	0.0	246,086.9
2043	-	-	-	0.0	0.0	-	0.0	0.0	0.118	0.0	246,086.9
2044	-	-	-	0.0	0.0	-	0.0	0.0	0.111	0.0	246,086.9
2045	-	-	-	0.0	0.0	-	0.0	0.0	0.104	0.0	246,086.9
2046	-	-	-	0.0	0.0	-	0.0	0.0	0.098	0.0	246,086.9
2047	-	-	-	0.0	0.0	-	0.0	0.0	0.091	0.0	246,086.9
2048	-	-	-	0.0	0.0	-	0.0	0.0	0.086	0.0	246,086.9
2049	-	-	-	0.0	0.0	-	0.0	0.0	0.080	0.0	246,086.9
2050	-	-	-	0.0	0.0	-	0.0	0.0	0.075	0.0	246,086.9
Total	-	1,815,902.6	(908,174.0)	908,174.0	1,197,138.5	907,728.6	$(278,044.4)$	629,684.2	14.8	246,086.9	5,491,986.1

Cl 40365 MS Sharepoint Platform Upgrade

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2010	-	-	-	-	-	-	-	-	1.000	-	-
2011	-	-	$(908,174.0)$	249,747.9	658,426.2	$(908,174.0)$	80,834.7	(827,339.3)	0.937	$(775,533.6)$	$(775,533.6)$
2012	-	144,594.0	-	362,134.4	296,291.8	144,594.0	67,386.4	211,980.4	0.879	186,264.3	$(589,269.3)$
2013	-	148,931.8	-	162,960.5	133,331.3	148,931.8	4,348.9	153,280.7	0.824	126,252.1	$(463,017.2)$
2014	-	153,399.8	-	73,332.2	59,999.1	153,399.8	$(24,831.3)$	128,568.5	0.772	99,266.4	$(363,750.8)$
2015	-	158,001.8	-	32,999.5	26,999.6	158,001.8	$(38,750.7)$	119,251.1	0.724	86,307.2	$(277,443.5)$
2016	-	162,741.8	-	14,849.8	12,149.8	162,741.8	$(45,846.5)$	116,895.3	0.678	79,304.7	$(198,138.8)$
2017	-	167,624.1	-	6,682.4	5,467.4	167,624.1	$(49,891.9)$	117,732.2	0.636	74,871.1	$(123,267.8)$
2018	-	172,652.8	-	3,007.1	2,460.3	172,652.8	$(52,590.2)$	120,062.6	0.596	71,572.1	(51,695.7)
2019	-	177,832.4	-	1,353.2	1,107.2	177,832.4	$(54,708.6)$	123,123.8	0.559	68,801.0	17,105.4
2020	-	183,167.4	-	608.9	498.2	183,167.4	$(56,593.1)$	126,574.2	0.524	66,300.3	83,405.6
2021	-	-	-	274.0	224.2	-	84.9	84.9	0.491	41.7	83,447.4
2022	-	-	-	123.3	100.9	-	38.2	38.2	0.460	17.6	83,464.9
2023	-	-	-	55.5	45.4	-	17.2	17.2	0.431	7.4	83,472.4
2024	-	-	-	25.0	20.4	-	7.7	7.7	0.404	3.1	83,475.5
2025	-	-	-	11.2	9.2	-	3.5	3.5	0.379	1.3	83,476.8
2026	-	-	-	5.1	4.1	-	1.6	1.6	0.355	0.6	83,477.4
2027	-	-	-	2.3	1.9	-	0.7	0.7	0.333	0.2	83,477.6
2028	-	-	-	1.0	0.8	-	0.3	0.3	0.312	0.1	83,477.7
2029	-	-	-	0.5	0.4	-	0.1	0.1	0.293	0.0	83,477.8
2030	-	-	-	0.2	0.2	-	0.1	0.1	0.274	0.0	83,477.8
2031	-	-	-	0.1	0.1	-	0.0	0.0	0.257	0.0	83,477.8
2032	-	-	-	0.0	0.0	-	0.0	0.0	0.241	0.0	83,477.8
2033	-	-	-	0.0	0.0	-	0.0	0.0	0.226	0.0	83,477.8
2034	-	-	-	0.0	0.0	-	0.0	0.0	0.212	0.0	83,477.8
2035	-	-	-	0.0	0.0	-	0.0	0.0	0.199	0.0	83,477.8
2036	-	-	-	0.0	0.0	-	0.0	0.0	0.186	0.0	83,477.8
2037	-	-	-	0.0	0.0	-	0.0	0.0	0.174	0.0	83,477.8
2038	-	-	-	0.0	0.0	-	0.0	0.0	0.164	0.0	83,477.8
2039	-	-	-	0.0	0.0	-	0.0	0.0	0.153	0.0	83,477.8
2040	-	-	-	0.0	0.0	-	0.0	0.0	0.144	0.0	83,477.8
2041	-	-	-	0.0	0.0	-	0.0	0.0	0.135	0.0	83,477.8
2042	-	-	-	0.0	0.0	-	0.0	0.0	0.126	0.0	83,477.8
2043	-	-	-	0.0	0.0	-	0.0	0.0	0.118	0.0	83,477.8
2044	-	-	-	0.0	0.0	-	0.0	0.0	0.111	0.0	83,477.8
2045	-	-	-	0.0	0.0	-	0.0	0.0	0.104	0.0	83,477.8
2046	-	-	-	0.0	0.0	-	0.0	0.0	0.098	0.0	83,477.8
2047	-	-	-	0.0	0.0	-	0.0	0.0	0.091	0.0	83,477.8
2048	-	-	-	0.0	0.0	-	0.0	0.0	0.086	0.0	83,477.8
2049	-	-	-	0.0	0.0	-	0.0	0.0	0.080	0.0	83,477.8
2050	-	-	-	0.0	0.0	-	0.0	0.0	0.075	0.0	83,477.8
Total	-	1,468,945.8	(908,174.0)	908,174.0	1,197,138.5	560,771.8	(170,487.8)	390,284.0	14.8	83,477.8	$(237,324.9)$

Page 1887 of 2359
Cl 40365 MS Sharepoint Platform Upgrade

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2010	-	-	-	-	-	-	-	-	1.000	-	-
2011	-	-	$(908,174.0)$	249,747.9	658,426.2	(908,174.0)	80,834.7	(827,339.3)	0.937	(775,533.6)	(775,533.6)
2012	-	71,410.5	-	362,134.4	296,291.8	71,410.5	90,073.3	161,483.8	0.879	141,893.6	(633,640.0)
2013	-	73,552.8	-	162,960.5	133,331.3	73,552.8	27,716.4	101,269.2	0.824	83,412.0	$(550,228.0)$
2014	-	75,759.4	-	73,332.2	59,999.1	75,759.4	(762.8)	74,996.6	0.772	57,904.1	$(492,323.9)$
2015	-	78,032.2	-	32,999.5	26,999.6	78,032.2	$(13,960.1)$	64,072.0	0.724	46,371.8	$(445,952.1)$
2016	-	80,373.1	-	14,849.8	12,149.8	80,373.1	$(20,312.2)$	60,060.9	0.678	40,746.8	$(405,205.3)$
2017	-	82,784.3	-	6,682.4	5,467.4	82,784.3	$(23,591.6)$	59,192.7	0.636	37,643.3	$(367,562.0)$
2018	-	85,267.9	-	3,007.1	2,460.3	85,267.9	$(25,500.8)$	59,767.0	0.596	35,628.5	$(331,933.5)$
2019	-	87,825.9	-	1,353.2	1,107.2	87,825.9	$(26,806.5)$	61,019.4	0.559	34,097.3	$(297,836.2)$
2020	-	90,460.7	-	608.9	498.2	90,460.7	$(27,854.0)$	62,606.6	0.524	32,793.7	$(265,042.5)$
2021	-	-	-	274.0	224.2	-	84.9	84.9	0.491	41.7	$(265,000.8)$
2022	-	-	-	123.3	100.9	-	38.2	38.2	0.460	17.6	(264,983.2)
2023	-	-	-	55.5	45.4	-	17.2	17.2	0.431	7.4	$(264,975.8)$
2024	-	-	-	25.0	20.4	-	7.7	7.7	0.404	3.1	$(264,972.6)$
2025	-	-	-	11.2	9.2	-	3.5	3.5	0.379	1.3	(264,971.3)
2026	-	-	-	5.1	4.1	-	1.6	1.6	0.355	0.6	$(264,970.7)$
2027	-	-	-	2.3	1.9	-	0.7	0.7	0.333	0.2	(264,970.5)
2028	-	-	-	1.0	0.8	-	0.3	0.3	0.312	0.1	(264,970.4)
2029	-	-	-	0.5	0.4	-	0.1	0.1	0.293	0.0	(264,970.4)
2030	-	-	-	0.2	0.2	-	0.1	0.1	0.274	0.0	(264,970.4)
2031	-	-	-	0.1	0.1	-	0.0	0.0	0.257	0.0	(264,970.3)
2032	-	-	-	0.0	0.0	-	0.0	0.0	0.241	0.0	(264,970.3)
2033	-	-	-	0.0	0.0	-	0.0	0.0	0.226	0.0	(264,970.3)
2034	-	-	-	0.0	0.0	-	0.0	0.0	0.212	0.0	$(264,970.3)$
2035	-	-	-	0.0	0.0	-	0.0	0.0	0.199	0.0	$(264,970.3)$
2036	-	-	-	0.0	0.0	-	0.0	0.0	0.186	0.0	$(264,970.3)$
2037	-	-	-	0.0	0.0	-	0.0	0.0	0.174	0.0	$(264,970.3)$
2038	-	-	-	0.0	0.0	-	0.0	0.0	0.164	0.0	$(264,970.3)$
2039	-	-	-	0.0	0.0	-	0.0	0.0	0.153	0.0	$(264,970.3)$
2040	-	-	-	0.0	0.0	-	0.0	0.0	0.144	0.0	(264,970.3)
2041	-	-	-	0.0	0.0	-	0.0	0.0	0.135	0.0	$(264,970.3)$
2042	-	-	-	0.0	0.0	-	0.0	0.0	0.126	0.0	$(264,970.3)$
2043	-	-	-	0.0	0.0	-	0.0	0.0	0.118	0.0	$(264,970.3)$
2044	-	-	-	0.0	0.0	-	0.0	0.0	0.111	0.0	$(264,970.3)$
2045	-	-	-	0.0	0.0	-	0.0	0.0	0.104	0.0	(264,970.3)
2046	-	-	-	0.0	0.0	-	0.0	0.0	0.098	0.0	(264,970.3)
2047	-	-	-	0.0	0.0	-	0.0	0.0	0.091	0.0	$(264,970.3)$
2048	-	-	-	0.0	0.0	-	0.0	0.0	0.086	0.0	(264,970.3)
2049	-	-	-	0.0	0.0	-	0.0	0.0	0.080	0.0	(264,970.3)
2050	-	-	-	0.0	0.0	-	0.0	0.0	0.075	0.0	$(264,970.3)$
Total	-	725,466.8	$(908,174.0)$	908,174.0	1,197,138.5	(182,707.2)	59,990.6	$(122,716.5)$	14.8	(264,970.3)	(12,514,420.0)

Page 1888 of 2359
Cl 40365 MS Sharepoint Platform Upgrade

Page 1890 of 2359

CI Number: 40290

Title: Enterprise Geographic Information System (GIS)
Start Date: 2011/01
Final Cost Date: 2011/12
Function: General Plant
Forecast Amount: \$320,381

DESCRIPTION:

This item provides for the costs associated with the implementation of an Enterprise Geographic Information System (GIS). The GIS captures, stores, analyzes, manages and presents data that are linked to specific geographic locations through merging cartography and database technology. NSPI's existing GIS was first introduced in 2001 and is primarily used in conjunction with the Outage Management System (OMS) to support the management of customer outages; particularly during storm-response events. Over the last number of years, stand-alone databases have been created to support specific business needs, but integration of these databases into an Enterprise GIS is now required. This enterprise system will enable a means for layering environmental and vegetation data over a distribution and transmission model, implement a website for storing and updating fusing and transformer specifications identified through engineering studies and allow for the incorporation of aerial inspection data into the GIS.

The increasing importance of geospatial data and the demand for both data storage and access has expanded significantly. This growth has generated the need for an Enterprise GIS with available capacity and an upgraded system structure (including coordination of system hardware).

The scope of this project includes an enterprise license agreement, a performance upgrade to a new front-end CITRIX server and an expansion of the GIS hardware in a way that will ensure performance for both the expanded user base as well as GIS editors.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Computers

Why do this project?

The GIS has been primarily used in conjunction with the Outage Management System (OMS) to effectively manage customer outage events. In the past year, the requirements for geospatial data have increased and the demand for a place to store and access the data has expanded significantly. This growth has generated the need for upgrading the existing GIS to an Enterprise GIS.

Why do this project now?
The GIS operational environment is expanding at a rapid pace. To ensure that further development of NSPI's GIS occurs at the enterprise level, this project must be completed in 2011.

Why do this project this way?

Consultation with GIS industry professionals and a review of technical proceedings has indicated that an Enterprise GIS is considered to be best practice.

Parent CI Number	$:$
Cost Centre	$: 800$

- 800-Services - Admin.

Approved Date

Budget Version
2011 ACE Plan

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO		16,214	0	16,214
094		094 - Interest Capitalized		16,466	0	16,466
095		095-COPS Regular Labour AO		24,701	0	24,701
001	078	001 - T\&D Regular Labour	078 - GP - Comp. Appl. Software	32,000	0	32,000
002	078	002 - T\&D Overtime Labour	078 - GP - Comp. Appl. Software	0	0	0
011	078	011 - Travel Expense	078 - GP - Comp. Appl. Software	10,000	0	10,000
012	078	012 - Materials	078 - GP - Comp. Appl. Software	13,000	0	13,000
028	078	028 - Consulting	078 - GP - Comp. Appl. Software		0	
034	078	034 - Appl. Software	078 - GP - Comp. Appl. Software		0	
035	078	035-Comp.Hrdwr \& Op.Sftwr	078 - GP - Comp. Appl. Software		0	
041	078	041 - Meals \& Entertainment	078 - GP - Comp. Appl. Software	3,000	0	3,000
056	078	056 - Training \& Development	078 - GP - Comp. Appl. Software	0	0	0
066	078	066 - Other Goods \& Services	078 - GP - Comp. Appl. Software	0	0	0
			Total Cost:	320,381	0	320,381
			Original Cost:			

CI 40290 - Enterprise GIS

The following is a breakdown of costs associated with the Enterprise GIS Project.
Administrative Overhead and Interest \$57,381
Materials
\$13,000
COPS Labour
Consulting
Software
Other

Total
\$320,381
The \$ in software costs for this project includes the cost for obtaining license agreements and web server upgrades for a common operating picture. The $\$$ in hardware costs are associated with a new front-end CITRIX server and expansion of the GIS hardware. The \$ in consulting costs is associated with engaging a consultant to assist with framing an enterprise strategy. Labour costs are associated with NSPI engineering and design support.

CI Number: 40275

Title: Eastlink Outage Information Interface
Start Date: 2011/03
Final Cost Date: 2011/08
Function: General Plant
Forecast Amount: $\quad \$ 296,460$

DESCRIPTION:

This item provides for the installation of a new interface from existing Telco equipment both at the pole and individual premises to the Outage Management System (OMS). This interface is expected to reduce the customer hours of interruption (CHs) by making the OMS aware of outages in a more timely manner and reduce the dependence on customer reporting of outages.

Completing this project will also replace the existing Sentry system, which is becoming obsolete.
Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Computers

Why do this project?

Less than one third of the original 1800 Sentrys deployed across the system continue to operate. These autonomous communication units provide a valuable source of outage information during both regular operation and storm situations. Expanding the number of devices that are linked to the OMS system can be achieved through the use of Telephone Service Provider pole top devices. Outage reporting devices like Sentrys or the use of Telco Outage devices greatly improve the outage prediction performance of the OMS by providing data to supplement customer calls.

Why do this project now?

The Sentry devices have been deployed by NSPI on the distribution system to enhance monitoring of power outages beyond Supervisory Control and Data Acquisition (SCADA) monitored devices and customer reports. The Sentry devices are no longer manufactured and while they remain operational and reliable, they are no longer supported and cannot be replaced as they become damaged. Expanding the number of automated monitoring sites throughout the system indicating customer outages will help reduce the number of customer hour interruptions and subsequently improve the reliability of the system.

Why do this project this way?

Utilizing existing Telco assets makes this a cost effective method to enhance monitoring of distribution circuits for outages and relaying this information back to the OMS for improved outage prediction.

Parent CI Number	$:$
Cost Centre	$: 620$

Approved Date

- 620-Control Centre Operations

Budget Version
2011 ACE Plan

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO		20,268	0	20,268
094		094 - Interest Capitalized		6,816	0	6,816
095		095-COPS Regular Labour AO		30,876	0	30,876
001	072	001 - T\&D Regular Labour	072 - GP - Computer Equipment	40,000	0	40,000
002	072	002 - T\&D Overtime Labour	072 - GP - Computer Equipment	0	0	0
011	072	011 - Travel Expense	072 - GP - Computer Equipment	5,000	0	5,000
012	072	012 - Materials	072 - GP - Computer Equipment	\square	0	-
028	072	028 - Consulting	072 - GP - Computer Equipment		0	
041	072	041 - Meals \& Entertainment	072 - GP - Computer Equipment	2,000	0	2,000
066	072	066 - Other Goods \& Services	072 - GP - Computer Equipment	4,000	0	4,000
			Total Cost:	296,460	0	296,460
			Original Cost:			

CI 40275 - Eastlink Outage Information Interface

The following is a breakdown of costs associated with the Eastlink Outage Information Interface Project.

Administrative Overhead and Interest Materials
COPS Labour
Consulting
Other

Total \$296,460

The $\$$ in material costs associated with this project is for the hardware to support this secure link to Eastlink. Consulting costs associated with this project are for utilizing Oracle, the OMS vendor, to build an interface to process the incoming data and is based on the costs of similar interfaces that have been built in 2010. Labour costs are associated with NSPI engineering and design support.

CI Number: 40229

Title: Protective Equipment Test Center Upgrade
Start Date: 2011/04
Final Cost Date: 2011/12
Function: General Plant
Forecast Amount: \$875,542

DESCRIPTION:

This project provides for the upgrade of the Protective Equipment Test Centre (PETC) and the replacement of aging equipment used in the regular inspection and maintenance of live line tools and rubber protective equipment, an integral element of NSPI's safe work practices.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Equipment Replacement

Why do this project?

The use of live line tools and rubber protective equipment forms an integral part of Nova Scotia Power Inc.'s safe work practices. The performance of this equipment is assured through regular testing and maintenance to national and international standards and specifications at the PETC.

The replacement of aging test equipment and an upgrade of the facility is necessary to ensure that the PETC continues to provide electrical workers with tools, that through regular inspection and maintenance, comply with industry standards and specifications.

Why do this project now?

The PETC was last upgraded approximately twenty years ago to meet industry requirements. The test equipment installed at this time has reached the end of its useful life. An increase in the time required to maintain this equipment will impact the execution of field work in cases where tested and certified rubber protective equipment and live line tools are unavailable due to equipment issues within the PETC.

Why do this project this way?

Repairing or replacing test equipment and an upgrade to the PETC is the most cost effective option to ensure the continuous supply of tested and safe electrical tools are available for the safe operation and maintenance of the electric power system.

CI 40229 - Protective Equipment Test Center Upgrade

The following is a breakdown of costs associated with the Protective Equipment Test Center Upgrade Project.

Administrative Overhead and Interest Materials
Contracts
Consulting
COPS Labour

Total
\$875,542

The materials portion of this project includes $\$$ US for a glove tester, $\$ \square$ US for a blanket/hose tester, \$ US for a bucket liner test set, \$ US for rubber washing and drying equipment, and the remainder for some ground set test equipment.

The contract portion includes physical changes to the building that are required to accommodate the equipment that is to be purchased. These modifications will also allow for process improvements in the PETC. This will include the relocation/addition and removal of walls, interior partition fencing for storage areas.

CI Number: 40274

Title: New RTU Deployment
Start Date: 2011/01
Final Cost Date: 2011/12
Function: General Plant
Forecast Amount: \$509,706

DESCRIPTION:

This item provides for Remote Terminal Units (RTUs) at four substations (Spryfield, Rockingham, Willow Lane and New Minas) that are not currently equipped with this equipment. In addition this project would also allow for the upgrade of some existing RTUs to further enhance their communication capabilities.

Summary of Related CI's +/- 2 years:
2010-38142 RTU Replacement Program \$780,137

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Equipment Replacement

Why do this project?

Completion of these new RTU installations and communication upgrades will provide remote monitoring and control capability to System Operators at the Energy Control Centre which will improve power outage prediction, and improve reliability through reduction of power outage duration. A total of 38,061 customers are served by these three substations.

Why do this project now?

Increasing operational visibility of distribution substations by adding RTUs and enhancing the ability to perform remote switching will provide a subsequent reduction in customer interruption hours.

Why do this project this way?

The technology that will be used in this project aligns with the communication methodology employed in over 120 other RTUs across the province.

CI 40274 - New RTU Deployment

The following is a breakdown of costs associated with the New RTU Deployment Project.

Administrative	Overhead and Interest	$\$ 95,957$
Materials	$\$ 320,000$	
COPS Labour	$\$ 55,000$	
Consulting	$\$ 10,000$	
Other $\$ 28,750$		

Total \$509,706
The material costs associated with this item are for the purchase of RTUs and associated accessories and are based on similar units purchased in 2010. The labour costs associated with this project are for engineering design, as well as for the installation of the RTUs.

CI Number: 40245

Title: 2011 RTU Replacement Program
Start Date: 2011/01
Final Cost Date: 2012/01
Function: General Plant
Forecast Amount: \$459,517

DESCRIPTION:

The Remote Terminal Unit (RTU) capital replacement program will replace selected RTUs, enabling NSPI to redeploy spare parts for other RTUs. This will add newer RTUs to the system and remove RTUs that are close to the end of their useful life.

Summary of Related CI's +/- 2 years
2010-38142 RTU Replacement Program \$780,137
This is a multi-year project that will continue beyond 2011. Future CIs TBD

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Equipment Replacement

Why do this project?

Due to changing standards, technology, and product lifespan, about 90 of the RTU's that are in service have been marked obsolete by their manufacturers. These unreliable RTU operations will have impacts on both generation and customer reliability. The commercial availability of spare parts is becoming difficult to manage effectively. Replacement of part of the operating inventory creates spares for use as necessary.

Why do this project now?

The inventory of RTU spare parts has become sparse. Most of the existing RTUs have reached the end of their useful life. RTU installations require extensive time and effort to complete. It is important to have an ongoing plan in place for the orderly replacement of units that are performing poorly and to gradually modernize the fleet.

Why do this project this way?

Most of NSPI's RTUs have reached the end of their useful life. It would be costly and time-consuming to replace all of those at once. By identifying enough RTUs to supplement the spares in inventory NSPI can find a balance between installing and retiring RTUs.

- 2011 RTU Replacement Program

Parent CI Number	$:$
Cost Centre	$: 620$

Approved Date
. 620

- 620-Control Centre Operations

Budget Version
2011 ACE Plan

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO		63,337	0	63,337
094		094 - Interest Capitalized		16,222	0	16,222
095		095-COPS Regular Labour AO		96,488	0	96,488
001	064	001 - T\&D Regular Labour	064-GP - Sup. Control and DA	125,000	0	125,000
002	064	002 - T\&D Overtime Labour	064 - GP - Sup. Control and DA	0	0	0
011	064	011 - Travel Expense	064-GP - Sup. Control and DA	50,000	0	50,000
012	064	012 - Materials	064 - GP - Sup. Control and DA	85,970	0	85,970
034	064	034 - Appl. Software	064 - GP - Sup. Control and DA	0	0	0
041	064	041 - Meals \& Entertainment	064 - GP - Sup. Control and DA	15,000	0	15,000
066	064	066 - Other Goods \& Services	064-GP - Sup. Control and DA	7,500	0	7,500
			Total Cost:	459,517	0	459,517
			Original Cost:	309,500		

CI 40245-2011 RTU Replacement Program

The following is a breakdown of costs associated with the 2011 RTU Replacement Program.
Administrative Overhead and Interest $\quad \$ 176,047$
Materials $\quad \$ 85,970$
COPS Labour $\quad \$ 125,000$
Other $\$ 72,500$
Total $\quad \$ 459,517$

The materials cost associated with this item is for the purchase of five RTU's for installation at the following substations: Kempt Road (104H), Onslow (57N), Henry St (691H), Townsend St (4S) and Keltic Drive (11S). The RTU's range in cost from \$8,800 to $\$ 16,720$ based on the requirements of the specific substation. This pricing is based on similar units purchased in 2010. The labour cost associated with this project is for engineering design, as well as for the installation of the RTU's.

CI Number: 40278

Title: OMS Upgrade 2011
Start Date: 2011/01
Final Cost Date: 2011/07
Function General Plant
Forecast Amount \$2,050,951

DESCRIPTION:

This project provides for the costs associated with upgrading the Outage Management System (OMS) to a version that is fully supported by the manufacturer. The OMS is a critical system in the prediction, tracking and restoration of customer power outages.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Telecommunication

Why do this project?

The upgrade is required to maintain full vendor support for the OMS application. Ongoing vendor support is required to ensure stable and reliable operation of this critical customer service application.

Why do this project now?

The OMS vendor has advised NSPI that in 2011 it will begin to reduce the level of support offered to 1.7x releases of the product (NSPI presently operates 1.7.1.1). Given the critical nature of the OMS to power restoration efforts, NSPI plans to proceed with an upgrade to sustain the priority vendor support which is necessary for this essential operational tool.

Why do this project this way?
A software upgrade to the existing system is the most cost effective and efficient method for maintaining full product support.

- OMS Upgrade 2011

Parent CI Number			- 620-Control Centre Operations		Approved Date Budget Version		
	Cost	entre : 620			2011 ACE Plan		
Capital Item Accounts							
Acct	Actv	Account	Activity	Forecast Amount		Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO		45,603	0	45,603	
094		094 - Interest Capitalized		19,877	0	19,877	
095		095-COPS Regular Labour AO		69,471	0	69,471	
001	072	001 - T\&D Regular Labour	072 - GP - Computer Equipment	90,000	0	90,000	
002	072	002 - T\&D Overtime Labour	072 - GP - Computer Equipment	0	0	0	
011	072	011 - Travel Expense	072 - GP - Computer Equipment	12,500	0	12,500	
012	072	012 - Materials	072 - GP - Computer Equipment	\square	0		
028	072	028 - Consulting	072 - GP - Computer Equipment		0		
034	072	034 - Appl. Software	072 - GP - Computer Equipment		0		
035	072	035 - Comp.Hrdwr \& Op.Sftwr	072 - GP - Computer Equipment		0		
041	072	041 - Meals \& Entertainment	072 - GP - Computer Equipment	8,500	0	8,500	
066	072	066 - Other Goods \& Services	072 - GP - Computer Equipment	5,000	0	5,000	
			Total Cost:	2,050,951	0	2,050,951	
			Original Cost:	1,610,364			

CI 40278 - OMS Upgrade 2011

The following is a breakdown of costs associated with the OMS Upgrade 2011 Project.
Administrative Overhead and Interest
Materials
COPS Labour
Consulting
Software
Other
Total
The $\$ 134,951$
necessary interface and service upgrades to OMS to allow NSPI to run on the most
current version of the software. Labour costs are associated with NSPI engineering and
design support.

CI Number: 40299

Title: Field Office Phone System Replacement
Start Date: 2011/04
Final Cost Date: 2011/11
Function: General Plant
Forecast Amount: \$833,557

DESCRIPTION:

This project provides for the replacement and consolidation of regional phone systems that have reached their end of life and are no longer supported. The project will give priority to equipment replacement and consolidation at sites that have the highest risk of service disruption.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Telecommunications

Why do this project?

The telephone systems in various areas of the province have reached capacity (i.e., no additional users can be added) and are no longer vendor supported. The replacement and consolidation of existing systems with the ongoing expansion of the enterprise Voice Over Internet Protocol (VoIP) system will support the expansion of new users and enable vendor support arrangements.

Why do this project now?

The current systems are at the end of their life (most are over 15 years old and are no longer supported by the vendor) and do not have the capacity to support new user demands. Access to parts is no longer being offered and parts have become increasingly difficult to source. Systems that experience failures can be costly to repair and may result in a telephone service outage during a critical event.

Why do this project this way?

The proposed enterprise replacement and consolidation model is the most cost effective option.

Parent CI Number	$:$
Cost Centre	$: 027$

Approved Date

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
001		001 - IT Regular Labour		205,000	0	205,000
094		094 - Interest Capitalized		19,251	0	19,251
095		095-IT Regular Labour AO		109,306	0	109,306
021	072	021 - Telephones	072-GP - Computer Equipment	500,000	0	500,000
			Total Cost:	833,557	0	833,557
			Original Cost:			

Recommendation :

Justification for this project is based on reduced maintenance costs for the current telephony environment. The project also supports benefits associated with the continued operations and safety of the company by providing stable and supported telephone systems (911, fire and health safety calls are routed through these systems).

Notes/Comments :

Regional Phone System Replacement Scenario 1

This scenario is based upon the replacement of 450 Centrex phones, and the replacement of PBX systems allowing us to avoid operating fees for Centrex, as well as ongoing maintenance costs incurred to maintain PBX.

Regional Phone System Replacement Scenario 2

Regional Phone System Replacement Scenario 3

Regional Phone System Replacement Scenario 4

Regional Phone System Replacements Regional Phone System Replacement Scenario 1

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2010	-	-	-	-	-	-	- -	-	1.000	-	-
2011	-	-	(833,557.0)	20,838.9	812,718.1	$(833,557.0)$	6,361.2	$(827,195.8)$	0.937	$(775,399.1)$	$(775,399.1)$
2012	-	178,200.0	-	40,635.9	772,082.2	178,200.0	$(42,778.1)$	135,421.9	0.879	118,993.4	$(656,405.7)$
2013	-	178,200.0	-	38,604.1	733,478.1	178,200.0	$(43,274.7)$	134,925.3	0.824	111,133.3	(545,272.4)
2014	-	178,200.0	-	36,673.9	696,804.2	178,200.0	$(43,993.3)$	134,206.7	0.772	103,619.7	$(441,652.7)$
2015	-	178,200.0	-	34,840.2	661,964.0	178,200.0	$(44,441.5)$	133,758.5	0.724	96,806.9	(344,845.8)
2016	-	178,200.0	-	33,098.2	628,865.8	178,200.0	$(44,981.6)$	133,218.4	0.678	90,378.7	$(254,467.1)$
2017	-	178,200.0	-	31,443.3	597,422.5	178,200.0	$(45,494.6)$	132,705.4	0.636	84,393.2	$(170,073.8)$
2018	-	178,200.0	-	29,871.1	567,551.3	178,200.0	$(45,982.0)$	132,218.0	0.596	78,818.2	$(91,255.6)$
2019	-	178,200.0	-	28,377.6	539,173.8	178,200.0	$(46,445.0)$	131,755.0	0.559	73,624.1	$(17,631.5)$
2020	-	-	-	26,958.7	512,215.1	-	8,357.2	8,357.2	0.524	4,377.5	$(13,253.9)$
2021	-	-	-	25,610.8	486,604.3	-	7,939.3	7,939.3	0.491	3,898.3	$(9,355.7)$
2022	-	-	-	24,330.2	462,274.1	-	7,542.4	7,542.4	0.460	3,471.5	$(5,884.2)$
2023	-	-	-	23,113.7	439,160.4	-	7,165.2	7,165.2	0.431	3,091.4	$(2,792.8)$
2024	-	-	-	21,958.0	417,202.4	-	6,807.0	6,807.0	0.404	2,752.9	(39.9)
2025	-	-	-	20,860.1	396,342.3	-	6,466.6	6,466.6	0.379	2,451.5	2,411.6
2026	-	-	-	19,817.1	376,525.2	-	6,143.3	6,143.3	0.355	2,183.1	4,594.7
2027	-	-	-	18,826.3	357,698.9	-	5,836.1	5,836.1	0.333	1,944.1	6,538.8
2028	-	-	-	17,884.9	339,814.0	-	5,544.3	5,544.3	0.312	1,731.2	8,270.0
2029	-	-	-	16,990.7	322,823.3	-	5,267.1	5,267.1	0.293	1,541.7	9,811.7
2030	-	-	-	16,141.2	306,682.1	-	5,003.8	5,003.8	0.274	1,372.9	11,184.6
2031	-	-	-	15,334.1	291,348.0	-	4,753.6	4,753.6	0.257	1,222.6	12,407.2
2032	-	-	-	14,567.4	276,780.6	-	4,515.9	4,515.9	0.241	1,088.7	13,495.9
2033	-	-	-	13,839.0	262,941.6	-	4,290.1	4,290.1	0.226	969.5	14,465.4
2034	-	-	-	13,147.1	249,794.5	-	4,075.6	4,075.6	0.212	863.4	15,328.8
2035	-	-	-	12,489.7	237,304.8	-	3,871.8	3,871.8	0.199	768.8	16,097.6
2036	-	-	-	11,865.2	225,439.5	-	3,678.2	3,678.2	0.186	684.7	16,782.3
2037	-	-	-	11,272.0	214,167.5	-	3,494.3	3,494.3	0.174	609.7	17,392.0
2038	-	-	-	10,708.4	203,459.2	-	3,319.6	3,319.6	0.164	543.0	17,935.0
2039	-	-	-	10,173.0	193,286.2	-	3,153.6	3,153.6	0.153	483.5	18,418.5
2040	-	-	-	9,664.3	183,621.9	-	2,995.9	2,995.9	0.144	430.6	18,849.0
2041	-	-	-	9,181.1	174,440.8	-	2,846.1	2,846.1	0.135	383.4	19,232.5
2042	-	-	-	8,722.0	165,718.8	-	2,703.8	2,703.8	0.126	341.4	19,573.9
2043	-	-	-	8,285.9	157,432.8	-	2,568.6	2,568.6	0.118	304.1	19,878.0
2044	-	-	-	7,871.6	149,561.2	-	2,440.2	2,440.2	0.111	270.8	20,148.7
2045	-	-	-	7,478.1	142,083.1	-	2,318.2	2,318.2	0.104	241.1	20,389.9
2046	-	-	-	7,104.2	134,979.0	-	2,202.3	2,202.3	0.098	214.7	20,604.6
2047	-	-	-	6,748.9	128,230.0	-	2,092.2	2,092.2	0.091	191.2	20,795.8
2048	-	-	-	6,411.5	121,818.5	-	1,987.6	1,987.6	0.086	170.3	20,966.1
2049	-	-	-	6,090.9	115,727.6	-	1,888.2	1,888.2	0.080	151.6	21,117.7
2050	-	-	-	5,786.4	109,941.2	-	2,205.8	2,205.8	0.075	166.1	21,283.8
Total	-	1,425,600.0	(833,557.0)	723,615.8	14,165,478.5	592,043.0	(217,555.4)	374,487.6	14.8	21,283.8	(2,920,356.3)

Regional Phone System Replacements

Page 1913 of 2359
Regional Phone System Replacements Regional Phone System Replacement Scenario 3

Page 1914 of 2359
Regional Phone System Replacements Regional Phone System Replacement Scenario 4

CI Number: 40249

Title: New Chester Microwave Radio Link

Start Date: 2011/02
Final Cost Date: 2011/12
Function: General Plant
Forecast Amount: $\quad \$ 407,925$

DESCRIPTION:

This project provides for the installation of new microwave radio links at the New Chester radio site on the Eastern Shore of Nova Scotia. The addition of this site will complete the backbone radio system from the Ragged Lake Energy Control Center to the 101S-Woodbine substation in Cape Breton.

The project will include the installation of two new radios at New Chester and one new radio at each of the Marinette and Cochrane Hill radio sites. This project will include the purchase of the radios, antennas and associated equipment as well as the design, installation and commissioning of the equipment at these sites.

Summary of Related CI's +/- 2 years
2010-38244 Replace Microwave Radio Systems \$410,068
2011 - 402522011 Replace Microwave Radio System \$351,658

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Telecommunication

Why do this project?

Microwave radio equipment provides for the transport of critical Supervisory Control and Data Acquisition (SCADA), teleprotection, voice and data traffic on NSPI's telecom network infrastructure. The current system configuration is such that communications to some radio sites can be disrupted when there are issues at other communication sites. This project will introduce a redundant path for traffic and a more robust network. It will ensure there are more reliable and diverse communication paths to alleviate the loss of communications.

Why do this project now?

Installation of the new node at New Chester will immediately improve the reliability of the system, reduce the possibility of long communication outages and provide communications infrastructure for the incorporation of new and additional technology in the future.

Why do this project this way?

The New Chester site was chosen as an intermediate site as it allows for the connection of two radio link systems to form a complete microwave radio link system from Ragged Lake to 101 S -Woodbine. There is currently an existing radio tower and building at the New Chester site. The tower has been designed to be able to accommodate the new antennas. In combination with the existing SONET-based fibre system, which also extends to 101S-Woodbine, two alternate paths for critical circuits will be in place.

Parent CI Number	$:$
Cost Centre	$: 620$

Approved Date
Cost Centre : 620

- 620-Control Centre Operations

Budget Version
2011 ACE Plan

CI 40249 - New Chester Microwave Radio Link

The following is a breakdown of costs associated with the New Chester Microwave Radio Link Project.

Administrative Overhead and Interest Materials
COPS Labour
Contracts
Consulting
Other
Total

$\$ 407,925$
The material costs associated with this item are based on previous projects that have utilized similar radio equipment. The contract costs of this project are associated with antenna installation by a contractor. The labour costs are associated with engineering design and field installation of the radios based on an internal rate of approximately $\$$ per person day.

CI Number: 40261

Title: Newtonville SR500 Multipoint Radio System Replacement
Start Date: 2011/02
Final Cost Date: 2011/11
Function: General Plant
Forecast Amount: \$351,681

DESCRIPTION:

This project will replace the obsolete SR Telecom SR500 radio system, which provides Supervisory Control and Data Acquisition (SCADA) communications to six hydro sites with a modern licensed multipoint radio system. This project will provide for one master station and six remote stations at the six hydro sites as well as a new fiber link at the White Rock outstation to provide network access.

Summary of Related CI's +/- 2 years:
2010-33524 Replace Microwave Radio - Brushy Hill \$127,199
2011-29043 Replace Metro SR500 Radio System \$125,470

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Telecommunication

Why do this project?

The existing equipment has reached the end of its useful life and because it has been discontinued by the manufacturer, spare parts for the system are no longer available. A failure of the radio system would result in an extended loss of communications to the six hydro sites, and the inability to remotely control these stations via SCADA.

Why do this project now?

The existing SR500 radio system is obsolete and cannot be effectively maintained. Replacement of this system in 2011 will ensure reliable communication and control to these sites.

Why do this project this way?

The multipoint radio system replacement option is a cost effective, proven technology suitable for this application. It has been deployed in other areas of the telecommunications network which will allow for common maintenance practices, sparing and training.

Parent CI Number	$:$
Cost Centre	$: 620$

Approved Date

Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO			11,548	0	11,548
094		094 - Interest Capitalized			9,473	0	9,473
095		095-COPS Regular Labour AO			17,592	0	17,592
095		095-Thermal Regular Labour AO			1,976	0	1,976
095		095-COPS Contracts AO				0	
001	055	001 - T\&D Regular Labour	055-GP - Teleprotection		22,790	0	22,790
002	055	002 - T\&D Overtime Labour	055-GP - Teleprotection		0	0	0
011	055	011 - Travel Expense	055-GP - Teleprotection		1,500	0	1,500
012	055	012-Materials	055-GP - Teleprotection			0	
013	055	013 - COPS Contracts	055 - GP - Teleprotection			0	
028	055	028 - Consulting	055-GP - Teleprotection			0	
041	055	041 - Meals \& Entertainment	055-GP - Teleprotection		1,500	0	1,500
066	055	066 - Other Goods \& Services	055 - GP - Teleprotection		0	0	0
001	085	001 - THERMAL Regular Labour	085 Design		8,230	0	8,230
002	085	002 - THERMAL Overtime Labour	085 Design		0	0	0
011	085	011 - Travel Expense	085 Design		1,500	0	1,500
041	085	041 - Meals \& Entertainment	085 Design		1,500	0	1,500
066	085	066 - Other Goods \& Services	085 Design		0	0	0
				Total Cost:	351,681	0	351,681
				Original Cost:	236,865		

CI 40261 - Newtonville SR500 Multipoint Radio System Replacement

The following is a breakdown of costs associated with the Newtonville SR500 Multipoint Radio System Replacement Project.

Administrative Overhead and Interest Materials
Contracts
COPS Labour
Consulting
Other

Total
$\$ 351,681$
The material costs associated with this project are for radios and peripherals with estimates based on previous projects. The contract costs of this project are associated with antenna installation by a contractor. The labour costs are associated with engineering design and field installation of the radios based on an internal rate of approximately per person day.

CI Number: 40252

Title: 2011 Replace Microwave Radio System
Start Date: 2011/02
Final Cost Date: 2011/12
Function: General Plant
Forecast Amount: $\$ 351,658$

DESCRIPTION:

This project provides for the replacement of existing microwave radio equipment on three critical radio hops across the province: Bridgewater to Greathill, Newtonville to Stronach and Lingan to Point Aconi. This equipment and systems allow for transport of critical Supervisory Control and Data Acquisition (SCADA), teleprotection, voice and data traffic on NSPI telecom network infrastructure.

Summary of Related CI's +/- 2 years
2010-38244 Replace Microwave Radio Systems \$410,068
2011-40249 New Chester Microwave Radio Link \$407,925

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Telecommunication
Why do this project?
Replacement of the equipment for three radio hops is required to ensure reliability and provide the required system capacity of the telecom network infrastructure.

Why do this project now?

The existing equipment has reached the end of its useful life and because it has been discontinued by the manufacturer, spare parts for the system are no longer available. Replacing the systems in 2011 will reduce the risk of losing protected communications to key facilities and areas of the province. Attachment 1 provides the manufacturer's discontinuation notice.

Why do this project this way?

The existing microwave radio equipment will be replaced with standard equipment used throughout the Company. This will allow for common sparing, maintenance practices and training for all the links.

CI Number : 40252

Parent CI Number	$:$
Cost Centre	$: 620$

Approved Date
. 620

- 620-Control Centre Operations

Budget Version
2011 ACE Plan

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T\&D Reg. Labour AO		7,540	0	7,540
094		094 - Interest Capitalized		10,936	0	10,936
095		095-COPS Regular Labour AO		11,486	0	11,486
095		095-Thermal Regular Labour AO		2,924	0	2,924
001	060	001 - T\&D Regular Labour	060 - GP - Broadband Radio	14,880	0	14,880
002	060	002-T\&D Overtime Labour	060 - GP - Broadband Radio	0	0	0
011	060	011 - Travel Expense	060 - TP - Broadband Radio	250	0	250
012	060	012 - Materials	060 - GP - Broadband Radio	290,712	0	290,712
041	060	041 - Meals \& Entertainment	060 - GP - Broadband Radio	250	0	250
066	060	066 - Other Goods \& Services	060 - GP - Broadband Radio	0	0	0
001	085	001 - THERMAL Regular Labour	085 Design	12,180	0	12,180
002	085	002 - THERMAL Overtime Labour	085 Design	0	0	0
011	085	011 - Travel Expense	085 Design	250	0	250
041	085	041 - Meals \& Entertainment	085 Design	250	0	250
066	085	066 - Other Goods \& Services	085 Design	0	0	0
			Total Cost:	351,658	0	351,658
			Original Cost:	134,697		

CI 40252-2011 Replace Microwave Radio System

The following is a breakdown of costs associated with the 2011 Replace Microwave Radio System Project.

Administrative Overhead and Interest	$\$ 32,886$
Materials	$\$ 290,712$
COPS Labour	$\$ 27,060$
Other	$\$ 1,000$
Total	$\$ 351,658$

The material costs associated with this item are based on previous projects that have utilized similar radio equipment. The labour costs are associated with engineering design and field installation of the radios based on an internal rate of approximately person day.

ALC T T L

PRODUCT CHANGE NOTICE (PCN)

Supplier Information
Alcatel USA
1000 Coit Road
Plano, TX 75075
TAC 1-888-252-2832
ALCL
Issue Date of Change
07/13/2001

PCN 01-381
Class D
Issue 01

System and Product Description
TNRADS
DVR-4X07e
MDR-4X06e MDR-4XU6e MDR-4X07e MDR-4X08e MDR-4X11e MDR-6X08/i

New Product Code(s)
 N/A

Old Product Code(s)
See Description of Change Section below
New CLEI Code(s)
Old CLEI Code(s)
N/A
N/A

Associated Products of Changes Affected

Any system that relies on these products should be evaluated.
Drawing Number
N/A
Product Change Classification

Classification Substantiation

This PCN is classified as D because it announces the A\&M (Additions and Maintenance) and MD (Manufacturing Discontinued) of various products.

Reason for Change

This PCN announces the A\&M (Additions and Maintenance) and MD (Manufacturing Discontinued) of various products as listed.

Description of Change

Product Classifications Description

Consistent with the policy to provide optimum support for the longest practical time to its customers, Alcatel USA regularly monitors market acceptance of its current products to provide a maximum sustained term in this classification.

Current Product Line:

Current high volume manufactured products including standard rack (bay) configurations, subsystems, plug-in modules and major replaceable components. Primary Marketing and Sales efforts are devoted to these products and purchasing, production planning, inventory management and other activities are focused to meet large-scale market requirements.

As new telecommunications technologies become available, market demands change and/or more efficient design and manufacturing processes are introduced, a transition to new superseding products will begin to take place. Under conditions of diminishing demand levels, Alcatel USA provides for continuing support of customer-owned systems by reclassification of the product from Current Product Line to Additions \& Maintenance.

> Additions \& Maintenance (A\&M):
> Equipment in the form of plug-in modules and selective sub-assemblies to expand previously delivered hard-wired but only partially equipped systems and to support module replacement requirements. Normally, six-month advance notice is given to the identified customer base before the A\&M classification becomes effective. These products will involve periodic rather than continuous production activity with stocking levels reflecting best available judgment of reduced market demands. As a result, prices are higher for these products and delivery intervals usually will be longer than for Current Product Line equipment.

The third and final phase in the life of a product is classified as Manufacturing Discontinued (MD). Reclassification of an A\&M status to MD status occurs when demands become sporadic, components are no longer available, or superseding products are available.

Manufacturing Discontinued (MD):

A product which is no longer available for purchase. Continuing support will be available by means of (1) equipment repair or replacement utilizing components and materials from sources that can be found through reasonable efforts and (2) remote technical assistance. Technical assistance over the telephone is billable at then current charges for such services annual contracts are available for such support. Please call 1-888-ALCATEC for more information. A product may become MD no sooner than six (6) months following classification to $\boldsymbol{A} \& M$. As is customary, a minimum of six months advance notification is given to the identified customer base.

Product Classification Changes

The following list details classification changes for Alcatel USA Wireless Access products.
Orders for products classified A\&M (Additions and Maintenance) will be considered at current pricing. Orders for products classified MD (Manufacturing Discontinued) will only be accepted subject to stock availability.

Existing contracts that spell out notice requirements will be executed as detailed in those contracts.

Product	New Status	Effective Date	Replacement Product
DVR-4107e	A\&M	January 15, 2002	MDR-8607-45
DVR-4107e	MD	July 15, 2002	MDR-8607-45
DVR-4207e	A\&M	January 15, 2002	MDR-8607-90
DVR-4207e	MD	July 15, 2002	MDR-8607-90
MDR-4X06e	A\&M	January 15, 2002	MDR-8606
MDR-4X06e	MD	July 15, 2002	MDR-8606
MDR-4XU6e	A\&M	January 15, 2002	MDR-8606
MDR-4XU6e	MD	July 15, 2002	MDR-8606
MDR-4X07e	A\&M	January 15, 2002	MDR-8607
MDR-4X07e	MD	July 15, 2002	MDR-8607
MDR-4X08e	A\&M	January 15, 2002	MDR-8608
MDR-4X08e	MD	July 15, 2002	MDR-8608

MDR-4X11e	A\&M	January 15, 2002	MDR-8611
MDR-4X11e	MD	July 15, 2002	MDR-8611
MDR-6X08/i (All versions including CommPak)	A\&M	January 15, 2002	MDR-8X08/i
MDR-6X08/i (All versions including CommPak)	MD	July 15, 2002	MDR-8X08/i

For additional information on these products, please contact the following Wireless Access Product Management personnel:

DVR-4000e	Scott Nelson	Product Manager	$972 / 996-5890$
MDR-4000e/i	Scott Nelson	Product Manager	$972 / 996-5890$
 CommPak	Pat Picquet	Product Manager	$972-996-6073$
MDR-8000	Pat Picquet	Product Manager	972-996-6073

For information on other Alcatel USA products, please call Alcatel USA at 1-888-252-2832 or 1-972-519-4141. In Canada, call your local network support specialist or the Technical Assistance Center.

The following provides additional information concerning the above product classification changes:

DVR-4X07e Microwave Digital Radio Family

The MDR-4X07e supports 1 xDS3 or $2 \times$ DS3 radio operating in the 7 GHz band designated for Studio-toTransmitter Link (STL) applications where bandwidths are restricted to 25 MHz . This product line is replaced by the MDR-8000-DS3

MDR-4X06e, -4XU6e, -4X07e, -4X08e, -4X11e Microwave Digital Radio Family The MDR-4000e family supports $1 \times$ DS3, $2 \times$ DS3 and $3 x$ DS3 applications in the L6, U6, 7, 8, and 11 GHz frequency bands. This product line is replaced by the MDR-8000-DS3.

MDR-6000 Microwave Digital Radio Family

The MDR-6000 product line in the L6, U6, 7, 8, 10.5 and 11 GHz frequency bands supports capacities of $2 \mathrm{x}, 4 \mathrm{x}, 8 \mathrm{x}, 12 \mathrm{x}$ and 16 xDS 1 or CEPT $2 \mathrm{x}, 4 \mathrm{x}, 8 \mathrm{x}, 12 \mathrm{x}$ and $16 \mathrm{xE} 1(2 \mathrm{Mb} / \mathrm{s})$ versions for international applications. This product line is replaced by the MDR-8000-DS1 and MDR-8000-E1.

Effect of Change

N/A

Material Affected

Products listed in the Description of Change section above.

Documentation Affected

N/A

Implementation Date

01/15/2002

Modification Completion Date

N/A

Modification Location
 N/A

Modification Cost

N/A

Location and Quantity of Equipment

N/A

Attachments

N/A

Comments

A\&M and MD information are announced via Class D Product Change Notices (PCNs) in compliance with the requirements of Telcordia GR-209-CORE.

General Information

For general assistance call the Alcatel Technical Assistance Center (TAC) at 1-888-252-2832 or 1-972-519-4141. In Canada, call 1-905-873-6300.

To be removed from this mailing list or for administrative assistance, call the PCN Administrator at 1-972-477-2529.

For Alcatel products and services information or for general company information, visit our web site at www.usa.alcatel.com.

CI Number: 40247

Title: 2011 Radio Tower Upgrades
Start Date: 2011/02
Final Cost Date: 2011/12
Function: General Plant
Forecast Amount: \$324,686

DESCRIPTION:

This project provides for NSPI's portion of the costs to construct a new radio tower at the Willow Hill radio site and to replace the existing tower at the Granite Village radio site. The total cost of the towers will be shared with the Province of Nova Scotia through a current cost sharing agreement.

Summary of Related CI’s +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Sub Criteria: Telecommunication

Why do this project?

A new radio tower at the Willow Hill site will allow for the installation of a radio link into the St. Croix Substation. Current communication with the substation is over leased circuits which have failed several times since installation. The power line carrier equipment is over 35 years old and requires replacement.

At the Granite Village radio site, the installation of a new heavy duty tower will allow NSPI to proceed with a planned upgrade to microwave radio equipment.

Why do this project now?

The Province of Nova Scotia is planning to proceed with the replacement of radio towers at Willow Hill and Granite Village in 2011. With input and cost sharing from NSPI under the Master License Agreement, the towers will be designed and constructed to accommodate the needs of both NSPI and the Province.

Why do this project this way?

Cost sharing with the Province of Nova Scotia is a very cost effective option for NSPI to have access to upgraded radio tower infrastructure, without having to build its own tower sites.

- 2011 Radio Tower Upgrades

Parent CI Number	$:$
Cost Centre	$: 620$

Approved Date

- 620-Control Centre Operations

Budget Version
2011 ACE Plan

Capital Item Accounts							
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
094		094 - Interest Capitalized			10,281	0	10,281
095		095-Thermal Regular Labour AO			1,203	0	1,203
095		095-COPS Contracts AO				0	
011	055	011 - Travel Expense	055 - GP - Teleprotection		600	0	600
012	055	012 - Materials	055 - GP - Teleprotection			0	
013	055	013-COPS Contracts	055-GP - Teleprotection			0	
028	055	028 - Consulting	055-GP - Teleprotection		-	0	\square
041	055	041 - Meals \& Entertainment	055 - GP - Teleprotection		400	0	400
066	055	066 - Other Goods \& Services	055-GP - Teleprotection		0	0	0
001	085	001 - THERMAL Regular Labour	085 Design		5,010	0	5,010
011	085	011 - Travel Expense	085 Design		250	0	250
041	085	041 - Meals \& Entertainment	085 Design		250	0	250
066	085	066 - Other Goods \& Services	085 Design		0	0	0
				Total Cost:	324,686	0	324,686
				Original Cost:	82,076		

CI 40247-2011 Radio Tower Upgrades

The following is a breakdown of costs associated with the 2011 Radio Tower Upgrades Project.

Administrative Overhead and Interest Materials
Contracts
COPS Labour
Consulting
Other

Total

\$324,686

The materials cost associated with this item is for NSPI's costs associated with the radio towers and associated components. Contract costs are for the antenna installation by contractors. Labour and consulting costs are related to the engineering design of the towers.

Pages 1933-1963 have been removed due to confidentiality.

CI Number: 40105

Title: Boiler Condition and Data Tracking Software
Start Date: 2011/02
Final Cost Date: 2011/09
Function: General Plant
Forecast Amount: $\quad \$ 570,643$

DESCRIPTION:

This project includes the installation and implementation of a boiler asset condition management tool that is designed to improve data collection and storage as well as analyze data related to NSPI's fleet of boiler assets.

Summary of Related CI's +/- 2 years:
No projects in 2009, 2010, 2011, 2012 and 2013

JUSTIFICATION:

Justification Criteria: Work Support Facilities

Why do this project?

Enhancing current capabilities of collecting, analyzing and storing boiler-related inspection data through the implementation of this software will assist in ensuring reliability of the boiler assets, minimize forced outages, support investment decisions and contribute to outage planning.

Why do this project now?

Executing this project now will ensure the knowledge base of an aging workforce with many years of experience operating and managing boiler assets is captured and maintained.

Why do this project this way?

Doing the project this way will ensure that a standardized approach in determining and monitoring boiler component condition is achieved. Implementing the boiler condition and data tracking software is a practical and costeffective solution to ensuring the reliability of boiler assets are maintained.

Parent CI Number	$:$
Cost Centre	$: 013$

- 013-Advanced Technologies

Approved Date

Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		14,649	0	14,649
095		095-IT Regular Labour AO		23,994	0	23,994
001	078	001 - IT Regular Labour	078 - GP - Comp. Appl. Software	45,000	0	45,000
013	078	013 - OTHER Contracts	078 - GP - Comp. Appl. Software		0	
034	078	034 - Appl. Software	078 - GP - Comp. Appl. Software		0	
			Total Cost:	570,643	0	570,643

Pages 1966-2345 have been removed due to confidentiality.

CI Number: 40293

Title: People Soft Workflow
Start Date: 2011/06
Final Cost Date: 2011/09
Function: General Plant
Forecast Amount: \$276,578

DESCRIPTION:

NSPI currently utilizes PeopleSoft to manage Human Resources management information, benefits administration, time \& labor, payroll, training, and pension services. This project will introduce a PeopleSoft automation tool called Workflow that will enable NSPI to efficiently automate the flow of HR related information throughout the Company.

Summary of Related CI's +/- 2 years:
2010 - 37722 PeopleSoft Upgrade \$585,072

JUSTIFICATION:

Justification Criteria: Work Support Facilities
Why do this project?
This project will reduce time consuming business processes (new hire, time entry, pension and safety training) that are currently run manually and can be automated and setup to deliver the right information to the right people at the right time.

Why do this project now?

Completing this project will ensure accurate and timely information is available to NSPI employees by automating manual tasks and processes.

Why do this project this way?

This project will ensure NSPI staff is able to effectively enable Workflow automation on additional processes not identified on the initial list. This is the most practical and cost effective option because the proposed solution is compatible with the existing PeopleSoft software.

CI Number : 40293			People Soft Workflow.		Project Number	
Paren	Cl Nu	ber :	-		Approved Date	
	Cost	entre : 022	- 022-Application Support		Budget Version	2011 ACE Plan
Capital Item Accounts						
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
001		001 - IT Regular Labour		29,070	0	29,070
001		001 - Regular Labour (No AO)		17,750	0	17,750
028		028 - Consulting			0	
035		035 - Comp.Hrdwr \& Op.Sftwr			0	-
041		041 - Meals \& Entertainment		900	0	900
056		056 - Training \& Development		10,000	0	10,000
094		094 - Interest Capitalized		3,338	0	3,338
095		095-IT Regular Labour AO		15,500	0	15,500
				276,578	0	276,578

Peoplesoft Workflow
Summary of Alternatives

Budget Year : Division : Department : Originator :	2011	Date : CI Number: Project No.	20-Dec-10
	Integrated Customer Service		40293
	Information Technology		N/A

	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
A	Peoplesoft Scenario 1	6.68\%	75,805	1	14.32\%	8.1 years
B	Peoplesoft Scenario 2	6.68\%	0	2	\#NUM!	0.0 years
C	Peoplesoft Scenario 3	6.68\%	0	2	\#NUM!	0.0 years
D	Peoplesoft Scenario 4	6.68\%	0	2	\#NUM!	0.0 years

Recommendation :

Justification of this project is based upon the expected benefits of workflow management. This project is expected to provide corporate benefits that would be equal to one Full Time Equivalent (FTE).

Notes/Comments :

Peoplesoft Scenario 1
By using workflow management, many time intensive Human Resource processes will be streamlined such as:

- the new hire process
- employee coordination for plant shutdown
- coordination of safety training
- pension reviews and set ups

Peoplesoft Scenario 2

Peoplesoft Scenario 3

Peoplesoft Scenario 4

Peoplesoft Workflow

Year	Total Revenue	Operating Costs	Capital	CCA	UCC	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2010	-	-	-	-	-	-	- -	-	1.000	-	-
2011	-	-	$(276,578.0)$	76,059.0	200,519.1	$(276,578.0)$	24,617.6	(251,960.4)	0.937	$(236,183.3)$	$(236,183.3)$
2012	-	54,616.7	-	110,285.5	90,233.6	54,616.7	17,241.8	71,858.4	0.879	63,141.0	$(173,042.3)$
2013	-	56,255.2	-	49,628.5	40,605.1	56,255.2	$(2,054.3)$	54,200.9	0.824	44,643.4	$(128,398.9)$
2014	-	57,942.8	-	22,332.8	18,272.3	57,942.8	$(11,042.3)$	46,900.6	0.772	36,211.5	$(92,187.4)$
2015	-	59,681.1	-	10,049.8	8,222.5	59,681.1	$(15,385.7)$	44,295.4	0.724	32,058.5	$(60,128.9)$
2016	-	61,471.5	-	4,522.4	3,700.1	61,471.5	$(17,654.2)$	43,817.3	0.678	29,726.8	$(30,402.1)$
2017	-	63,315.7	-	2,035.1	1,665.1	63,315.7	$(18,997.0)$	44,318.7	0.636	28,184.2	$(2,217.9)$
2018	-	65,215.2	-	915.8	749.3	65,215.2	$(19,932.8)$	45,282.4	0.596	26,993.9	24,776.0
2019	-	67,171.6	-	412.1	337.2	67,171.6	$(20,695.4)$	46,476.2	0.559	25,970.7	50,746.6
2020	-	69,186.8	-	185.4	151.7	69,186.8	$(21,390.4)$	47,796.4	0.524	25,036.0	75,782.6
2021	-	-	-	83.5	68.3	-	25.9	25.9	0.491	12.7	75,795.3
2022	-	-	-	37.6	30.7	-	11.6	11.6	0.460	5.4	75,800.7
2023	-	-	-	16.9	13.8	-	5.2	5.2	0.431	2.3	75,802.9
2024	-	-	-	7.6	6.2	-	2.4	2.4	0.404	1.0	75,803.9
2025	-	-	-	3.4	2.8	-	1.1	1.1	0.379	0.4	75,804.3
2026	-	-	-	1.5	1.3	-	0.5	0.5	0.355	0.2	75,804.5
2027	-	-	-	0.7	0.6	-	0.2	0.2	0.333	0.1	75,804.5
2028	-	-	-	0.3	0.3	-	0.1	0.1	0.312	0.0	75,804.6
2029	-	-	-	0.1	0.1	-	0.0	0.0	0.293	0.0	75,804.6
2030	-	-	-	0.1	0.1	-	0.0	0.0	0.274	0.0	75,804.6
2031	-	-	-	0.0	0.0	-	0.0	0.0	0.257	0.0	75,804.6
2032	-	-	-	0.0	0.0	-	0.0	0.0	0.241	0.0	75,804.6
2033	-	-	-	0.0	0.0	-	0.0	0.0	0.226	0.0	75,804.6
2034	-	-	-	0.0	0.0	-	0.0	0.0	0.212	0.0	75,804.6
2035	-	-	-	0.0	0.0	-	0.0	0.0	0.199	0.0	75,804.6
2036	-	-	-	0.0	0.0	-	0.0	0.0	0.186	0.0	75,804.6
2037	-	-	-	0.0	0.0	-	0.0	0.0	0.174	0.0	75,804.6
2038	-	-	-	0.0	0.0	-	0.0	0.0	0.164	0.0	75,804.6
2039	-	-	-	0.0	0.0	-	0.0	0.0	0.153	0.0	75,804.6
2040	-	-	-	0.0	0.0	-	0.0	0.0	0.144	0.0	75,804.6
2041	-	-	-	0.0	0.0	-	0.0	0.0	0.135	0.0	75,804.6
2042	-	-	-	0.0	0.0	-	0.0	0.0	0.126	0.0	75,804.6
2043	-	-	-	0.0	0.0	-	0.0	0.0	0.118	0.0	75,804.6
2044	-	-	-	0.0	0.0	-	0.0	0.0	0.111	0.0	75,804.6
2045	-	-	-	0.0	0.0	-	0.0	0.0	0.104	0.0	75,804.6
2046	-	-	-	0.0	0.0	-	0.0	0.0	0.098	0.0	75,804.6
2047	-	-	-	0.0	0.0	-	0.0	0.0	0.091	0.0	75,804.6
2048	-	-	-	0.0	0.0	-	0.0	0.0	0.086	0.0	75,804.6
2049	-	-	-	0.0	0.0	-	0.0	0.0	0.080	0.0	75,804.6
2050	-	-	-	0.0	0.0	-	0.0	0.0	0.075	0.0	75,804.6
Total	-	554,856.5	(276,578.0)	276,578.0	364,580.1	278,278.5	$(85,245.7)$	193,032.8	14.8	75,804.6	1,702,866.1

Peoplesoft Workflow
ำ

Peoplesoft Workflow

Peoplesoft Workflow

Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

6 GLOSSARY OF TERMS

Capacitor	A device used by electrical utilities to maintain voltage on a distribution or a transmission line.
Capacity	The load for which a generating unit, generating station, or other electrical apparatus is rated. Several capacity values may be identified as follows:
Maximum:	the maximum output that can be achieved.
Nameplate:	the maximum output specified by the manufacturer.

Demand The rate at which electric energy is delivered at a given instant or averaged over some designated period of time, expressed in kilowatts, megawatts, and other larger units. Also called "load" or "power."

Distribution System The facilities (i.e. lines, transformers, switches and sub-stations) used to distribute electricity over short distances from the transmission system to the customer, generally at voltages below 69 kV .

Energy Terms A kWh is a measure of energy equal to 1000 watts, over a period of one hour.

A MWh is a measure of energy equal to 1000 kilowatt hours.
A GWh is a measure of energy equal to 1000 megawatt hours.
Electrical Generation The process of transforming other forms of energy into electrical energy. At Nova Scotia Power, this means using coal, oil, natural gas, diesel fuel, water or wind as fuel for the process to create electrical energy.

Feeder An electric line for supplying electrical energy within an electric service area or subarea.

Nova Scotia Power Inc. 2011 Annual Capital Expenditure Plan

Heat Rate A measure of the thermal efficiency of a generation station, generally expressed as Btu per net kWh . The lower the heat rate (the fewer Btu's required to produce a kilowatt hour of electricity), the more efficient the generating unit.

Line A term used to describe a section of either distribution or transmission conductor, and its supporting hardware towers and insulators.
Load See Demand.

Load Factor The ratio of energy supplied during a given period to the maximum that could have been supplied had the peak load in that period been maintained in all hours.

Recloser A heavy duty power switch capable of detecting abnormal power flows, then automatically opening and closing according to preset instructions.

Relay A piece of equipment used to monitor quantities such as current, pressure, liquid levels, voltage or temperature and take action when these quantities are outside prescribed limits.

Substation A facility for switching circuits and/or transforming electrical energy from one voltage to another.

Three Phase Three separate conductors, each at the same nominal voltage, used to supply power primarily to large customers.

Transformer An electromagnetic device for changing voltage from one level to another.
Transmission System The facilities (i.e. lines, transformers, switches and substations) used to transmit electrical energy from the generating stations throughout the province and NB Power/NSPI interconnection to various parts of the transmission system, generally at voltages of 69 kV and higher.

Nova Scotia Power Inc.
2011 Annual Capital Expenditure Plan

7 NSPI 2011 QUICK REFERENCE SHEET

2011 AFUDC Rate $\quad 7.87 \%$

2011 O/H Rates

Power Production		Customer Operations		Shared Services	
PP Regular	24.0%	Regular	77.2%	Regular	53.3%
Hydro	18.5%	Contract	23.5%		
Contractor	5.0%	Vehicle	50.7%		

82011 DEPRECIATION RATES (YEAR 3 of the PHASE-IN)

	2011
Steam Production Plant	
Lingan	
Lingan 1-2	2.14\%
Lingan 3-4	2.18\%
Lingan - Common	2.93\%
Total Lingan	2.22\%
Point Aconi 1	2.50\%
Point Tupper	
Point Tupper 1	1.62\%
Point Tupper 2	2.46\%
Total Point Tupper	2.43\%
Trenton	
Trenton 1-4	1.23\%
Trenton 5	3.68\%
Trenton 6	2.43\%
Trenton - Common	2.64\%
Total Trenton	2.62\%
Tufts Cove	
Tufts Cove 1	2.78\%
Tufts Cove 2	3.05\%
Tufts Cove 3	2.80\%
Tufts Cove - Common	3.73\%
Total Tufts Cove	3.12\%
General	3.49\%
Total Steam Production Plant	2.50\%

	2011
Hydraulic Production Plant	
Avon	1.89\%
Bear River	1.35\%
Black River	1.41\%
Dickie Brook	2.09\%
Fall River	1.54\%
Harmony	2.49\%
Lequille System	1.75\%
Roseway	1.83\%
St. Margaret's	2.00\%
Sheet Harbor	2.13\%
Tusket	1.75\%
Wreck Cove System	1.31\%
Annapolis Tidal	1.81\%
General	1.94\%
Total Hydraulic Production	1.51\%
Other Production - Gas Turbines	
Burnside	1.84\%
Tusket	5.50\%
Victoria Junction	2.27\%
Total Other Production - Gas Turbines	2.47\%
LM6000	3.33\%
Wind Turbines	5.00\%
Transmission Plant	
Land Rights - Easements	1.21\%
Station Equipment	2.51\%
Towers \& Fixtures	1.16\%
Poles \& Fixtures	3.31\%
Overhead Conductors \& Devices	2.18\%
Underground Conduit	1.59\%
Underground Conductors \& Devices	2.64\%
Roads, Trails \& Bridges	1.47\%
Transmission- Indirect Costs	2.71\%
Transmission Net Salvage Allowance	\$1,827,004
Total Transmission Plant	2.63\%

Distribution Plant

Land Rights - Easements, Surveys \& Clearing 1.57\%
Structures \& Improvements 2.99\%
Station Equipment 2.26\%
Poles, Towers \& Fixtures 3.07\%
Overhead Conductors \& Devices 3.26\%
Underground Conduit 1.32\%
Underground Conductors \& Devices 2.32\%
Line Transformers 4.69\%
Services 2.78\%
Meters 5.18\%
Street Lighting \& Signal Systems 4.55\%
Distribution- Indirect Costs 4.18\%
Distribution Net Salvage Allowance \$7,092,193
Total Distribution Plant $\quad \mathbf{4 . 1 1 \%}$

General Plant
Land Rights - General Plant 1.94\%
Structures \& improvements 2.60\%
Office Furniture \& Equipment 5.79\%
Office Furniture \& Equip - Comp Hardware 12.62\%
Reserve Variance Amort - Comp Hardware 44,703
Office Furniture \& Equip - Comp Software 12.98\%
Transportation Equipment 14.45\%
Stores Equipment 5.17\%
Tools, Shop and Garage Equipment 4.78\%
Laboratory Equipment 10.83\%
Communication Equipment 4.62\%
Communication Equipment - SCADA Eq 5.08\%
Miscellaneous Equipment 5.42\%
Roads, Bridges \& Traps (Kelly Rock) 2.96\%
Mining Equipment (Kelly Rock) 3.60\%
General - Indirect Costs 8.48\%
General Net Salvage Allowance $\quad \$(859,451)$
Total General Plant 8.04\%

[^0]: * Various Carryover Projects are still pending UARB Approval.

[^1]: Base EAM assumptions: 90% likelihood of tube failure(s) if project is not completed in 2011. Tube failure(s) would result in
 an un-planned outage of 54 hours and a Unit de-rating of 154 MW . Under base case assumptions, NPV of the project is $\$ 1.70 \mathrm{M}$
 Notes:
 Base Case:

[^2]: If likelihood of tube failure(s) is increased to 95% and all other base assumptions remain the same, the NPV of the project is $\$ 1.84 \mathrm{M}$.

[^3]: Low Case: of tube failure(s) is reduced to 10% if the project is not completed in 2011 and all other base assumptions remain the same the NPV of the project is -617 K .

 If outage duration as a result of unplanned tube failure(s) reduces to 12 hours and all other base assumptions remain the same, the NPV of the project is $\$ 580 \mathrm{~K}$.

[^4]: ${ }^{\text {a }}$ S.C. 2004, c. 15, s. 31
 ${ }^{\text {b }}$ S.C. 1999, c. 33
 ${ }^{\text {c }}$ S.C. 2002, c. 7, s. 124

[^5]: ${ }^{\text {a }}$ L.C. 2004, ch. 15, art. 31
 ${ }^{\text {b }}$ L.C. 1999, ch. 33
 ${ }^{\text {c }}$ L.C. 2002, ch. 7, art. 124

[^6]: Equipment and liquids used for their servicing
 Cables and pipelines
 A facility other than transfer site or destruction facility

 Retention of labels

[^7]: \square

[^8]: ${ }^{1}$ SOR/91-152
 ${ }^{2}$ SOR/91-152 SOR/92-507; SOR/2000-102, s. 15

[^9]: ${ }^{1}$ DORS/91-152
 ${ }^{2}$ DORS/92-507; DORS/2000-102, a. 15

